期刊文献+

显微CT的锥束重建技术 被引量:4

Cone-beam Reconstruction for Micro-CT
下载PDF
导出
摘要 显微CT技术一直是Iowa大学CT/显微CT实验室研究的焦点。这篇文章报告了我们在锥束显微CT方面最近取得的一些进展。我们利用Feldkamp类算法进行了多X光源和检测器偏置条件下的近似图象重建;解释了Grangeat精确重构框架下的图象伪影。最后重点介绍了最近有关一般分块迭代Landweber格式的收敛性结果;给出了模拟和实验结果,探讨了进一步的研究方向。 X-ray micro-CT has been a focus in the CT/Micro-CT Lab, the University of Iowa. In this paper, some recent progress we made on cone-beam micro-CT is described. First, we address approximation reconstruction using Feldkamp-type algorithms with multiple X-ray sources and displaced detector configurations. After an appropriate fan-beam weighting function on the rectangular redundant region for equi-angular data is derived for multiple imaging chains, we can insert it into a general Feldkamp algorithm for cone-beam reconstruction with multiple sources and obtain a reconstruction formula. Then, we explain three types of artifacts associated with exact reconstruction in the Grangeat framework as applied to the circular scanning locus, which are thorn, wrinkle, and V artifacts. The thorn pattern is due to inappropriate extrapolation into the shadow zone in the Radon domain. Hence, the zero padding technique should be avoided in this context. The wrinkle texture arises if interpolation needed to compute the first derivatives of the Radon data is not smooth between adjacent detector planes. In particular, the nearest neighbor interpolation method should not be used in general. If the number of projections is not small, the bi-linear interpolation method is effective to suppress the wrinkle artifacts. The V shape on the meridian plane comes from the line integrations through the transition zones where derivative data change abruptly, and are very unstable. Two immediate remedies are to increase the sampling rate and suppress data noise. Finally, we report our recent convergence results of a generalized block-iterative Landweber scheme, which includes the SART and some other well-known algorithms and their ordered-subset versions as special cases. The iterative approach has been important in image reconstruction for reducing image noise and artifacts in the cases of noisy and/or incomplete data. It is shown that block-iterative schemes can greatly speed the reconstruction process and produce satisfactory image. Representative images from simulation and experiments are also given .
出处 《CT理论与应用研究(中英文)》 2002年第3期7-11,共5页 Computerized Tomography Theory and Applications
基金 中国NKBRSF基金(G1998030606) 美国NIH(DC03590 HL64368)资助。
关键词 显微CT技术 锥束重建 伪影 收敛性 近似重建算法 精确重建算法 迭代重建算法 Micro-CT Cone-beam reconstruction artifacts convergence
  • 相关文献

参考文献12

  • 1Y. Liu, H. Liu, Y. Wang, G. Wang, "Half-scan cone-beam CT fluoroscopy with multiple X-ray sources,"Med. Phys.2001, 28:1466-1471.
  • 2M. D. Silver, "A method for including redundant data in computed tomography", Med. Phys. 27:773-774, 2000.
  • 3G. Wang. "X-ray micro-CT with a novel detector array setting," Med. Phys., 29:1634-1636,2002.
  • 4S.W. Lee, G. Cho, G. Wang, "Artifacts associated with the Grangeat formula". Med. Phys., in review
  • 5M. Jiang, G. Wang. "Development of iterative algorithms for image reconstruction". to appear in J. of X-Ray Sci. and Tech..
  • 6M. Jiang, G. Wang. "Convergence studies on block iterative algorithms for image reconstruction". IEEE Trans, Med. Imaging, in review.
  • 7A.H. Andersen, A.C. Kak. "Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm". Ultrasonic Imaging ,1984,6:81-94.
  • 8http://cfi.lbl.gov/3D-2001/.
  • 9J. Browne, A.R. De Pierro. "A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography". IEEE Trans. Medical Imaging,, 1996,15:687-699.
  • 10J.A. Fessler,."Statistical image reconstruction methods for transmission tomography". in the SPIE Handbook of Medical Imaging vol. 3, ed. M. Sonka and J. M. Fitzpatric, IEEE Press,2000, Bellingham, Washington, USA, 1-70.

同被引文献38

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部