期刊文献+

Univied Parallel Lattice Structures for Block Time—Recursive Real—Valued Duiscrete Gabor Transforms 被引量:1

原文传递
导出
摘要 In this paper,the 1-D real-valued discrete Gabor transform(RDGT)proposed in the previous work and its relationship with the complex-valued discrete Gabor transform(CDGT)are briefly reviewed.Block time-recursive RDGT algorithms for the efficient and fast computation of the 1-D RDGT coefficients and for the fast reconstruction of the original signal from the coefficients are developed in both critical sampling and oversampling cases.Unified parallel lattice structuires for the implementation of the algorithms are studied.And the computational complexity analysis and comparison show that the proposed algorithms provide a more efficient and faster approach to the computation of the discrete Gabor transforms.
作者 陶亮 庄镇泉
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2003年第1期90-96,共7页 计算机科学技术学报(英文版)
  • 相关文献

参考文献14

  • 1Gabor D. Theory of communication. J. Inst. Electr.Eng., 1946, 93(III): 429-457.
  • 2Bastiaans M. Gabor's expansion of a signal into Gaussian elementary signals. In Proc. IEEE, 1980, 68: 538-539.
  • 3Wexler J, Raz S. Discrete Gabor expansions. Signal Processing. 1990, 21(3): 207-220.
  • 4Qian s, Chen D. Discrete Gabor transforms. IEEE Trans. Signal Processing, 1993, 21(7): 2429-2438.
  • 5Qian s, Chen D. Joint time-frequency analysis. IEEE Signal Processing Magazine, 1999, 6(2): 52-67.
  • 6Wang Liwa et al. An efficient algorithm to compute the complete set of discrete Gabor coefficients. IEEE Trans.Image Processing, 1994, 3(1): 87-92.
  • 7Qiu Sigang, Zhou Feng, Crandall Phyllis E. Discrete Gabor transforms with complexity O(N log N). Signal Processing, 1999, 77(2): 159-170.
  • 8Tao Liang et al, Real discrete Gabor expansion for finite and infinite sequences. In Proc. 2000 IEEE International Symposium on Circuits and Systems, Geneva,Switzerland, May 28-31, 2000, IV: 637-640.
  • 9Tao Liang, Chen G J. Real-valued discrete Gabor transforms for discrete signal and image representation. Chinese Journal of Electronics, 2001, 10(4): 444-449.
  • 10Tao Liang, Kwan H K. 1D and 2D real-valued discrete Gabor transforms. In Proc. 43rd IEEE Midwest Symposium on Circuits and Systems, Michigan, USA, Aug.8-11, 2000, I: 1182-1185.

同被引文献7

  • 1Gabor D.Theory of communication[J].J Inst Electr Eng,1946,93(3):429-457.
  • 2Wang L,Chan C T,Lin W C.An efficient algorithm to compute the complete set of discrete Gabor coefficients[J].IEEE Transafions on Image Processing,1994,3(1):87-92.
  • 3Wexler J,Raz S.Discrete Gabor expansions[J].Signal Processing,1990,21(3):207-220.
  • 4Qian S,Chen D.Siscrete Gabor transform[J].IEEE Transactions on Signal Processing,1993,41(7):2429-2438.
  • 5Morris J M,Liu Y.Discrete Gabor expansion of discrete-time signals in p(Z)via frame theory[J].IEEE Signal Processing Magazine,1994,40(2):151-181.
  • 6Lu C,Joshi S,Morris J M.Parallel lattice structure of block timerecursive generalized Gabor transforms[J].Signal Processing,1997,57(2):195-203.
  • 7Tao L,Kwan H K.Real discrete Gabor expansion for finite and infinite sequences[C]/Proceedings of the 2000 IEEE International Symposium on Circuits and Systems,Geneva,Switzerland,2000,4:637-640.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部