期刊文献+

一种改进的RBF神经网络及其在短期交通量预测中的应用 被引量:3

An Improved RBF Neural Network and Its Application in the Predicton of Short-term Traffic Volume
下载PDF
导出
摘要 文中提出了一种改进的RBF神经网络最近邻聚类学习算法,并将其应用于短期交通量预测中。实验结果表明,改进算法的拟合效果明显优于常规最近邻聚类学习算法的拟合效果,可以明显提高RBF神经网络的性能。 An improved nearest neighbor-clustering learning algorithm for radial basis function (RBF) neural network is presented. Then the improved algorithm is applied to the prediction of short-term traffic volume. The experimental results show that the fitting effect of the improved algorithm is apparently superior to that of the conventional nearest neighbor-clustering learning algorithm and the performance of RBF neural network can be improved apparently.
作者 陈平
出处 《电气自动化》 北大核心 2003年第1期36-38,共3页 Electrical Automation
关键词 RBF神经网络 短期交通量预测 径向基函数神经网络 交通流 最近邻聚类学习算法 radial basis function neural network nearest neighbor-clustering learning algorithm short-term traffic volume prediction
  • 相关文献

参考文献5

二级参考文献16

  • 1[1]Rumelhart, D. E. , Hinton, G. E. , and Williams, R. J: Learning Internal Representations by Erroe propagation in parallel Distributed Processing[J]. MIT Press ,cambridge, 1986,1: 318-- 362
  • 2[2]Wong ,Y. How radical basis functions works[J]. Proc. Int. Joint Conf. Neural networks,seattle,WA.1991 ,2:133-138.
  • 3[3]Renals ,S. radial basis function network for speech pattern classification[J]. Electron. Lett. , l. 1989,25:437-439.
  • 4[4]Zurada,J. M. ,Zigoris,D. M. ,Arohime , P. B. ,and desai,M. Classification of printed characters using muti - layer feedforward neural networks IEEE Proc. 34Ty Midwest Symp. Circutis syst. , 1991,2: 191 - 202.
  • 5[5]nath, R. , Jackson, W. , &Jones , T. W.. A Comparison of classical and the linear programming approaches to the classification problem in discriminant analysis[J ]. Journal of Statistical computation and Stimulation, 1992,41( 1 ): 73-93.
  • 6[6]T. Song , Y. Shimada.K. Suzuki.H. Sayama. Automated Fault Tree Synthesis Using Event Relation Matrix[J]. Journal of the Society of Plant Engineers Japan, 1997 ,18(4):8-15.
  • 7郭桂蓉 谢维信 庄钊文 等.模糊模式识别[M].长沙:国防科技大学出版社,1993..
  • 8徐秉铮,张百灵,韦岗.神经网络理论与应用[M].广州:华南理工大学出版社,1993.
  • 9Haykin S. Neural networks:A Comprehensive Foundation[M]. Upper Saddle R iver, NJ:Prentice Hall, 1999.
  • 10王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用[J].信息与控制,1997,26(4):272-284. 被引量:178

共引文献225

同被引文献31

  • 1高为广,杨元喜,张婷.神经网络辅助的GPS/INS组合导航自适应滤波算法[J].测绘学报,2007,36(1):26-30. 被引量:27
  • 2KREER JB.A Comparison of Predictor Algorithms for Computerized Control [J] .Traffic Engineering, 1975, 45 (4): 51-56.
  • 3交通工程手册编委会.交通工程手册.北京:人民交通出版社,1998
  • 4Okutani I,Stephanedes Y J.Dynamic prediction of traffic volume through kalman filtering theory.Transportation Research(B),1984:1-11
  • 5付梦印,邓志红,张继伟.Kalman滤波理论及其在导航中的应用[M].北京:科学出版社,2003.
  • 6NASSAR S, NOURELDIN A, EL-SHEIMY N. Im- proving positioning accuracy during kinematic DGPS outage periods using SINS/DGPS integration and SINS data de-noising [J]. Survey Review, 2004, 37 (292) :426-438.
  • 7MOHAMMED E D, SPIROS P. A frequency domain INS/GPS dynamic response method for bridging GPS outages[J]. Journal of Navigation, 2010,63 (4):627- 643.
  • 8CHIANG K W, NOURELDIN A, EL-SHEIMY N. Multisensor integration using neuron computing for land-vehicle navigation [J]. GPS Solutions, 2003, 6 (4) :209-218.
  • 9NOURELDIN A, OSMAN A, EL-SHEIMY N. A neuro-wavelet method for multi-sensor system inte- gration for vehicular navigation[J]. Measurement Sci- ence and Technology, 2004,15 (2) : 404-412.
  • 10XU Z,LI Y,RIZOS C,et al. Novel hybrid of LS-SVM and kalman filter for GPS/INS integration[J]. Journal of Navigation, 2010,63 (2) : 289-299.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部