期刊文献+

有限带L_p函数非正规样本表示的截断误差界

TRUNCATION ERROR BOUNDS FOR IRREGULAR SAMPLIMG EXPANSIONS OF BANDLIMITED L_p-FUNCTIONS
下载PDF
导出
摘要 令 Bσ,p,1<p <∞表示 Lp 中有限带函数 (带落在 [-σ,σ]内 )的全体 .由著名的 Whit-taker- Kotelnikw- Shannon样本定理 ,一切 Bσ,p中的函数 f可以由无限多个样本点重构 ,即f(x) =∑k∈ Zf(kπσ) sinσ(x- kπ/σ)σ(x- kπ/σ) .进一步的研究表明 f∈ Bσ,p可以由某些非正规样本点重构 .但是在实际应用上 ,只能记录和处理有限多个样本点 ,故研究截断误差估计是重要的 .通过研究给出了在某些条件下由正规样本点和非正规样本点所确定的 Lp Let B σ,p ,1<p<∞ denote the space of all L p functions that are bandlimited to . The well known Whittaker Kotelnikov Shannon sampling theorem states that every f∈B σ,p can be reconstructed by its infinitely many sampling points, i.e., f(x)=∑k∈Zf(k π σ) sin (σ(x-k π /σ))σ(x-k π /σ), x∈R. Furthermore, f∈B σ,p can be reconstructed by irregular sampling points. But, in practice, only a finite number of samples can be measured and stored, so one would like to study the truncation error. In the cases of the regular sampling points and the irregular ones, the uniform bounds are given for the truncation error of bandlimited L p functions which satisfy some conditions.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期607-612,共6页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目 (196 710 12 ) 教育部博士点基金资助项目
关键词 样本定理 非正规节点组 整函数 FOURIER变换 有限带Lp函数 非正规样本 截断误差界 sampling theorem irregular sampling points truncation error
  • 相关文献

参考文献12

  • 1Whittaker J M. Interpolatory function theory[M]. Combridge: Combridge University Press, 1935
  • 2Butzer P L, Stens R L. The Euler-Maclaurin summation formula, the sampling theorem, and approximate integration over the real axis[J]. Linear Algebra Appl, 1983,52/53:141
  • 3Higgins J R. Five short stories about the cardinal series[J]. Bull Amer Math Soc,1985,12:45
  • 4Fang Gensun. Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error[J]. J Approx Theory, 1996,85(2):115
  • 5Hinsen G. Irregular sampling of bandlimited Lp-functions[J]. J Approx Theory, 1993,72:346
  • 6Yao K, Thomas J B. On truncation error bounds for sampling representations of band-limited signals[J]. IEEE Trans on Aerospace and Electronic Systems, 1966,AES-2:640
  • 7王建军,房艮孙.非等距样本表示的截断误差估计[J].北京师范大学学报(自然科学版),1997,33(1):18-21. 被引量:3
  • 8Cambanis S. Truncation error bounds for the cardinal sampling expansion of band-limited signals[J]. IEEE Trans Information Theory, 1982,IT-28:605
  • 9Piper H S. Bounds for truncation error in sampling expansions of finite energy band-limited signals[J]. IEEE Trans Information Theory, 1975,IT-21:482
  • 10Zayed A. Kramer's sampling theorem for multidimensional signals and its relationship Lagrange-type interpolations[J]. J Multidimensional Systems and Signal Processing, 1992,3:323

二级参考文献2

  • 1房艮孙,科学通报,1994年,39卷,1638页
  • 2Yao K,IEEE Trans AES,1966年,2卷,6期,640页

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部