摘要
研究求解非线性方程组的局部算法。提出了LU分解的牛顿步与预优广义共轭梯度步的优化组合的方法(简称LU Newton PGCG)。在保证传统牛顿方法恰二阶收敛的条件下,证明了新算法也具有相同的恰二阶收敛的优点,但在计算量上却有一定的节省。如变量维数n=150时,其计算量可以节省40%,且当变量维数n趋于无穷时,二者的计算量之比以ln2 lnn的速度趋于零。
A local algorithm for nonlinear equations is discussed. The LU factorization Newton step and the preconditioned generalization conjugate gradient(LUNewtonPGCG) step are combined. This new algorithm is proved quadratically convergent exactly under the same conditions ensuring the LUNewton algorithm quadratically convergent exactly . But the cost on computation is less than that on the LUNewton algorithm. The ratio of computation will decrease 40% when n=150,and reduce to zero at the rate of ln 2/ln n when n is infinite.
出处
《北京联合大学学报》
CAS
2002年第4期65-68,共4页
Journal of Beijing Union University
关键词
非线性方程组
改进牛顿算法
预优广义共轭梯度
恰二阶收敛
nonlinear equations
preconditioned generalization conjugate gradient
quadratically convergent exactly