期刊文献+

控制图异常模式的识别技术研究 被引量:2

Abnormal Pattern Recognition Technology for Control Chart
下载PDF
导出
摘要 质量控制图中所呈现出的异常状态可揭示出加工过程潜在的质量问题。本文提出了一种基于SLFM网络的控制图模式识别模型 ,该模型不仅能够识别控制图的 6种基本模式 ,对混合型的异常模式也能够有效识别。数字仿真表明 ,该模型训练速度快 ,识别精度高 ,并且具有很强的可塑性 。 Abnormal control charts can provide clues to reveal potential quality problems in manufacturing process. In this paper, a pattern recognition model based on SLFM network is proposed to recognize the control chart patterns, which include six basic patterns and their mixed patterns. Numerical results show that this model possesses advantages of quick training and satisfactory recognition performance. This model can improve its recognition accuracy because of its flexibility. The above mentioned good performances facilitate the use of the proposed model in an on line real time mode.
出处 《航空制造技术》 北大核心 2003年第2期43-46,共4页 Aeronautical Manufacturing Technology
关键词 异常模式 SLFM网络 质量控制图 模式识别 SLFM network Control charts Pattern recognition
  • 相关文献

参考文献2

二级参考文献1

共引文献9

同被引文献15

  • 1Duncan A J.Quality Control and Industrial Statistics[M].5th ed.Homewood:Irwin,1986.
  • 2Shewhart M.Interpreting Statistical Process Control(SPC) Charts Using Machine Learning and Expert System Techniques[C]//.Aerospace and Electronics Conference,Proceedings of the IEEE 1992 National,1992.
  • 3Cheng C S.A Multi-layer Neural Network Model for Detecting Changes in the Process Mean[J].Computers & Industrial Engineering(S0360-8352),1995,28(1):51-61.
  • 4Guh R S,Hsieh Y C.A Neural Network Based Model for Abnormal Pattern Recognition of Control Charts[J].Computer& Industrial Engineering(S0360-8352),1999,36(1):97-108.
  • 5Guh R S,Zorriassatine F.On Line Control Chart Pattern Detection and Discrimination-A Neural Network Approach[J].Artificial Intelligence in Engineering(S0954-1810),1999,13(4):413-425.
  • 6Guh R S.Integrating Artificial Intelligence into On-line Statistical Process Control[J].Quality and Reliability Engineering International(S0748-8017),2003,19(1):1-20.
  • 7Lei H,Govindaraju V.Half-Against-Half Multi-class Support Vector Machines[C]//.The 6th International Workshop on Multiple Classifier Systems,Monterrey,CA,June 2005:156-164..
  • 8Wang H Q,Song Z H,etc.Improved PCA with optimized sensor locations for process monitoring and fault diagnosis[C]//.Proceedings of the 39th IEEE Conference on Decision and Control,Sydney,Australia,2000:4353-4358.
  • 9Wang H Q,Song Z H,etc.Fault Detection Behavior and Performance Analysis of Principal Component Analysis based Process Monitoring Methods[J].Industrial & Engineering Chemistry Research (S0888-5885),2002,41(10):2455-2464.
  • 10Vapnik V.The Nature of Statistical Learning Theory[M].NewYerk:Springer,1995.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部