期刊文献+

离子非线性极化漂移对动力学Alfvér孤波特性的影响 被引量:1

THE INFLUENCE OF ION'S NONLINEAR POLARIZATION DRIFT ON THE CHARACTER OF SOLITARY KINETIC ALFVEN WAVE
下载PDF
导出
摘要 考虑离子极化漂移中非线性项对动力学Alfven孤波特性的影响,采用双流体模型研究磁化等离子体中低频动力学Alfven稀疏型孤波的特性.所得的结果表明,两种类型的动力学Alfven稀疏型孤波在磁层中大范围内均存在(参数β约为10-6-0.1,β为等离子体的热压与磁压之比,即β=2μ0 nT/B02),它们或以超Alfven速或以亚Alfven速传播.同时发现在β值较小(10-6-10-4)时,离子极化漂移非线性项对动力学Alfven孤波特性有较大的影响,不可忽略.而在较大值时(β~0.1),此修正作用不大.由于动力学Alfven孤波允许平行电场存在,故它对等离子体中带电粒子的加速和能化起重要作用;同时也对离子的横向加速有一定的作用,它使一种新的能量转换机制成为可能. Considering the influence of ion's nonlinear polarization drift on Solitary Kinetic Alfven Wave (SKAW), the character of the low-frequency dip SKAW in the magnetic plasma is investigated with the two-fluid mode. The derived results indicate that two kinds of dip SKAW both exist in a wide range in magnetosphere (for the pressure parameter β - 10-6-0.1, where β is the ratio of thermal pressure to magnetic pressure, i.e. β = 2μ0 nT/B02). They propagate at Sub- Alfvenic speed or Super-Alfvenic speed. And ion's nonlinear polarization drift has great effect on the SKAW when the value of β is smaller (β-10-6-10-4). It can not be neglected. But it has weak effect on the SKAW when the value of β is bigger (β - 0.1). Because of the SKAW having the parallel electric field, the solitary wave is important for the acceleration and energy transmission of charged particles in magnetic plasma. And the SKAW is also put effects on the transverse ion transverse acceleration. The SKAW makes a novel kind of mechanism of energy transmission possible.
出处 《空间科学学报》 CAS CSCD 北大核心 2003年第1期18-24,共7页 Chinese Journal of Space Science
基金 国家自然科学基金资助项目(49834040 10173010)
关键词 离子极化漂移 动力学Alfven稀疏型孤波 Sagdeev势 等离子体 磁层 空间结构 Ion nonlinear polarization drift, Dip solitary kinetic Alfven wave, Sagdeev potential
  • 相关文献

参考文献11

  • 1Wang X Y, Liu Z X, Li Z Y. One-dimensional solitary kinetic Alfvén waves in low-beta plasma. Phys. Plasmas, 1998, 5(12):4395-4400
  • 2Chen Y, Li Z Y, Liu W, Shi Z D. Solitary kinetic Alfvén waves in the inertial limit region. Phys. Plasmas, 2000, 7(1):371-374
  • 3Wu D J et al. Solitary kinetic Alfvén waves in the two-fluid model. Phys. Plasmas, 1996, 3(8):2879- 2884
  • 4Wu D J, Wang D Y, Falthammar C G. An analytical solution of finite-amplitude solitary kinetic Alfvén waves. Phys. Plasmas, 1995, 2(12):4476-4481
  • 5Louarn P, Wahlund J E et al. Observation of kinetic Alfvén waves by the FREJA spacecraft. Geophys. Res. Lett., 1994, 21(17):1847-1850
  • 6Stasiewicz K, Bellan P, Chasion C et al. Small scale Alfvénic structure in the aurora. Space Sci. Rev., 2000, 92(3/4):422-533
  • 7Volwerk M, Louarn P, Chust T et al. Solitary kinetic Alfvén waves: A study of the Poynting flux. J. Geophys. Res., 1996, 101(A6):13335-13343
  • 8Bouhram M, Dubouloz N, Malingre M et al. Ion outflow and associated perpendicular heating in the cusp observed by interball auroral probe and fast auroral snapshot. J. Geophys. Res., 2002, 107(A2):1-13
  • 9Chaston C C, Carlson C W, Peria W J et al. FAST observations of inertial Alfvén waves in the dayside aurora. Geophys. Res. Lett., 1999, 26(6):647-650
  • 10Kletzing C A, Mozer F S, Torbert R B. Electron temperature and density at high latitude. J. Geophys. Res., 1998, 103(A7):14 837-14 845

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部