期刊文献+

基于EEG高阶过零分析的脑损伤检测新方法 被引量:2

HIGHER ORDER CROSSING ANALYSIS OF EEG FOR BRAIN INJURY QUANTIFICATION
下载PDF
导出
摘要 目的 :提出基于高阶过零 (HOC)的方法并利用EEG检测由于缺氧窒息而引起的中枢神经系统损伤及对损伤程度进行定量评估。方法 :采用两种基于HOC的方法 ,一种为依据EEG信号序列统计分布特性的HOCSD(S距离 )法 ,另一种为依据预处理后EEG信号的谱特性的HOCCF法。结果 :对三类实验样本进行了检测 ,检测结果与神经缺欠值 (NDS)的相关性高达 96 %。结论 :实验数据分析表明 ,两种基于HOC的新方法对于检测由于缺氧窒息而引起的中枢神经系统损伤及对损伤程度进行定量评估具有一定的意义。 Objectives: To develop two higher order crossings (HOC) based EEG analysis methods for the brain injury detection and quantification. Methods: Two HOC based methods were used. One was based on the statistical distribution of the EEG time series via a distance measure. The other was based on the spectrum characteristics of a preprocessed EEG signal. Results: The detection and analysis results of three types of samples showed that the correlation coefficients between the results and the neurological deficit scores (NDS) obtained from several behavioral tests were as high as 96%. Conclusions: The new HOC-based methods are more correlated with the NDS than existing methods. They are useful for the brain injury detection and analysis of the central nervous system.
作者 邱天爽 X.Kong
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2003年第1期16-22,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 ( 30 170 2 5 9) 辽宁省科学技术基金资助项目 ( 2 0 0 110 10 5 7)
关键词 脑电图 脑损伤检测 高阶过零检测 缺氧窒息 Electroencephalography Neurology Patient treatment Signal detection Statistical methods
  • 相关文献

参考文献10

  • 1[1]Viglione S, Martin W. Automatic analysis of the EEG for sleep staging[C]. In: Automation of Clinical Electroencephalography. New York: Raven Press,1973,269-285.
  • 2[2]Myers R, Stockard J, Saidman L. Moitoring of cerebral perfusion during anesthesia by time-compressed Fourier analysis of the electroencephalogram[J]. Stroke, 1977,8:331-337.
  • 3[3]Thatcher R, Walker R, Gerson I, et al. EEG discriminant analysis of mild head trauma[J]. Electroenceph Clin Neurophysiol,1989,73:94-106.
  • 4[4]Gersch W. Spectral analysis of EEGs by autoregression of time series[J]. Math Biosci,1970,7:205-222.
  • 5[5]Bodenstein G, Praetorius H. Feature extraction from electroencephalogram by adaptive segmentation[J]. Proc IEEE,1977,65:642-652.
  • 6[6]Kong X, Brambrink A, Hanley DF, et al. Quantification of injury-related EEG signal changes using distance and information[J]. IEEE Trans Biomed Engineering,1999,46:899-901.
  • 7[7]Goel V, Brambrink AM, Baycal A, et al. Dominant frequency analysis of EEG reveals brain′s response during injury and recovery. IEEE Trans Biomed Engineering, 1996,43:1083-1091.
  • 8[8]Kong X, Qiu T. Injury detection for central nervous system via EEG with higher order crossing-based methods[J]. Methods of Information in Medicine,2000,39(2):171-174.
  • 9[9]Kedem B. Time series analysis by higher order crossings[M]. New York: IEEE Press,1994.
  • 10[10]Kedem B. Higher-order crossings in time series identification[J]. Technometrics,1987,29:193-204.

同被引文献18

  • 1Rosso O A, et. Brain electrical activity analysis using wavelet-based informational tools[J]. Physica A, 2002,313:587~608.
  • 2Tseng S, Chen R, Chong F,et al. Evaluation of para-metric methods in EEG signal analysis[J]. MedEng Phys, 1995,17(1):71~78.
  • 3Pardey J, Roberts S, Tarassenko L. A review of parametric modeling techniques for EEG analysis[J]. Med Eng Phys,1996,18(1):2~11.
  • 4Rosso O A, Blanco S, Yordanova J, et al. A new tool for analysis of short duration brain electrical signals[J]. J Neurosci Method,2001,105:65~75.
  • 5Tong S, Bezerianos A, Paul J,et al. Nonextensive entropy measure of EEG following brain injury from cardiac arrest source[J]. Physica A: Statistical Mechanics and its Applications,2002,305(3~4):619~628.
  • 6Shen Minfen, Sun Lisha, Chan F H Y. The classification of transient time-varying EEG signals via wavelet packets decomposition[A]. The 8th International Conference on Neural Information Processing[C]. 2001.336~339.
  • 7Sun Z, Chang C C. Continuous condition assessment for bridges based on wavelet packets decomposition[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001,4337:357~367.
  • 8Li Zhancheng, Shen Minfen, Beadle P. Classification of EEG signals under different brain functional states using RBF neural network[A]. International Symposium on Neural Networks[C].2004, 3174/2004,356~361.
  • 9Thakor NV.Nonlinear change in brain's response in the event of injury as detected by adaptive coherence estimation of evoked potentials[J].IEEE Trans Biomed Eng,1995,42(1):42-51.
  • 10Goeal V,Thakor NV.Dominant frequency analysis of EEG reveals brain's response during injury and recovery[J].IEEE Trans Biomed Eng,1996,43:1083-1092.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部