期刊文献+

马尔可夫随机场在SAR图像处理中的应用 被引量:6

Markov Random Field Models for SAR Images Processing
下载PDF
导出
摘要 马尔可夫随机场 (MRF)可以很好地描述空间连续性 ,选择适当的邻域系统 ,能对图像的结构特征建模。利用以能量函数表示的联合概率分布 ,可以使用优化算法进行参数估计。高斯MRF能够准确、简洁地表示图像的纹理 ,而且具有线性特性 ,计算方便。本文回顾了在SAR图像处理中使用的MRF模型 ,详细说明了其中 2种在图像复原及分割中的应用。 By Selecting a proper neighborhood system and using the ability of Markov Random Field (MRF) to describe spatial dependence (continuity), MRF can be used to model the structural and textural behavior of images. Using the joint probability distribution in terms of an energy function, estimation of parameters can be performed by the stochastic relaxation algorithm. Gaussian MRF can represent a range of textures accurately and compactly and can be analysed tractably. In this paper,several MRF models are introduced, and the application of two models to restoration and segmentation of SAR images are presented in detail.
作者 彭祥龙 张扬
出处 《电讯技术》 北大核心 2003年第1期63-67,87,共6页 Telecommunication Engineering
关键词 SAR图像处理 马尔可夫随机场 模拟退火 流域变换 四叉树分解 SAR images processing Markov Random Field(MRF) Simulated annealing Watershed transformation Quadtree decomposition
  • 相关文献

参考文献8

  • 1[1]I.McConnell, R.White, C.Oliver,R.Cook.Radar Cross-Section Estimation of SAR Images[A],Proc. SPIE[C], vol.2584,1995,pp.164~175.
  • 2[2]R.G.White.A simulated annealing algorithm for SAR and MTI images cross-section estimation[A],Proc. SPIE[C], vol.2316,1994, pp.137~145.
  • 3[3]J.Schou,H.Skriver.Restoration of Polarimetric SAR Images Using Simulated Annealing[J].IEEE Trans. Geosci. Remote Sensing, vol.39, No.9, 2001,pp.2005~2016.
  • 4[4]S.Geman,G.Geman.Stochastic Relaxation,Gibbs Distributions, and the Bayesian Restoration of Images[J]. IEEE Trans. Pattern Anal. Machine Intell., vol.PAMI-6, No.6,1984,pp.721~741.
  • 5[5]D.K.Panjwani,G.Healey.Markov Random Field Models for Unsupervised Segmentation of Textured Color Images[J]. IEEE Trans. Pattern Anal. Machine Intell., vol.17, No.10, 1995,pp939~954.
  • 6[6]Y.Dong B.C.Forester.Segmentation of radar imagery using the Gaussian Markov random field model[J].Int. J. Remote Sensing, vol. 20, No. 8,1999, pp1617~1639.
  • 7[7]M.Datcu, K.Seidel,M.Walessa.Spatial Information Retrieval from Remote-Sensing Images-Part Ⅰ: Information Theoretical Perspective[J].IEEE Trans. Geosci. Remote Sensing, vol.36, No.5, 1998,pp.1431~1445.
  • 8[8]http://www.nasoftware.co.uk/caesar.

同被引文献43

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部