期刊文献+

凸函数的方向可微性与一种广义Asplund空间

The Directional Differentiability of a Convex Function and a Kind of Generalized Asplund Spaus
下载PDF
导出
摘要 讨论了Banach空间X上凸函数的方向可做性,引入了一种广义Asplund空间.若Y是X的子空间,且X的每一凸开集D上的连续凸函数在D的一个稠密Gδ集上沿(Y可微)Y的单位球一致可做,就称X关于Y是(弱)Aspund空间.我们得到当子空间Y是Asplund空间时,X关于Y是Asglund空间;当Y是光滑空间,弱紧生成的Banach空间或是可分空间时,X关于Y是弱Aspund空间. In this paper, we discuss the directional differentiability of a convex function on a Banch space and introduce a kind of generalized Asplund spaces: If Y be a subspace of X and every continuous convex function on an open convex subset D of X is Y differentiable uniormly differentiable in the unit ball of Y on a dense Gδ subset of D, X is called a (weak) Asplund space with respect ot Y. We obtain that X is an As-plund space with respect Y if Y is an Asplund subspace of X and that X is a weak Aspund space with re-spect to Y if Y is a smooth subspace、 a weakly and compacdy generalized subspace of or a separable subspace of X.
出处 《昆明师范高等专科学校学报》 1999年第4期1-4,共4页 Journal of Kunming Teachers College
基金 云南省应用基础研究基金!96A012G
关键词 凸函数 BANACH空间 可微性 ASPLUND空间 子空间 Banach space convex function differentiability Asplund space
  • 相关文献

参考文献1

  • 1J. E. Jayne,C. A. Rogers. Borel selectors for upper semi-continuous set-valued maps[J] 1985,Acta Mathematica(1):41~79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部