期刊文献+

一种基于Markov链模型的动态聚类方法 被引量:9

A Clustering Algorithm Based on Markov Chain Models
下载PDF
导出
摘要 对单变量时间序列的聚类 ,是一类有着广泛应用背景的特殊的聚类问题 由于该问题的特殊性 ,现有的聚类方法无法直接使用 ,故提出了一种新的基于Markov链模型的动态聚类方法 该方法首先对每一个时间序列建立一个描述其动态特征的Markov链模型 ,从而把对时间序列的聚类问题转化为对Markov链模型的聚类问题 然后通过定义各个Markov链之间的“距离” ,采用动态聚类算法完成对这些Markov链模型的聚类 使用该方法 ,分别对一批真实数据和仿真数据进行了聚类试验 。 Clustering a set of univariate time series based on their dynamics is a popular problem that can be widely found in many research areas Because the common clustering algorithm can't directly be used to resolve this problem, a new approach to grouping time series is proposed This approach firstly models each time series as a Markov chain that captures the dynamic character of the time series, and then gets the clustering result to these time series by clustering the Markov chains Using this method, two different data sets are clustered, in which, one is real data, and the other is artificial data By qualitative and quantitative analysis, it is proved that both of the clustering results are good
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第2期130-135,共6页 Journal of Computer Research and Development
基金 国家重点基础研究项目 (G19980 3 0 5 0 9) 自然科学基金项目 (60 2 2 3 0 0 4) 国家"八六三"高技术研究发展计划项目 (2 0 0 1AA114 0 82 )
关键词 MARKOV链模型 动态聚类方法 网络数据挖掘 时间序列 语音识别 计算机 web mining cluster analysis Markov chain
  • 相关文献

参考文献6

  • 1T Oates. Identifying distinctive subsequence in multivariate time series by clustering. In: Proc of the 16th Int'l Conf on Machine Learning. Morgan Kaufmann Publishers Inc, 1999. 128~135
  • 2马振华等.现代应用数学手册--概率统计与随机过程卷.北京:清华大学出版社,2001(Ma Zhenhua et al. The Handbook of Modem Application Mathematics: Volume for Probability Statistics and Stochastic Process (in Chinese). Beijing: Tsinghua University Press, 2001)
  • 3I Zuckerman, D Albrecht, A Nicholson. Predicting user' s requestson the WWW. In: Proc of the 7th Int'l Conf on User Modeling. New York: Springer, 1999. 275~284
  • 4J Borges, M Levene. Data mining of user navigation patterns. In:Proc of the 1999 KDD Workshop on Web Mining. CA: SpringerVerlag Press, 1999. 92~111
  • 5R Sarukkai. Link prediction and path analysis using Markov chains. In: WWW9-The 9th World Wide Web Conference.Amsterdam Netherlands, 2000. http://www9. org. w9cdrom/68/68. html
  • 6D Heckerman, D Geiger, M Chickering. Learning Bayesian networks: The combination of knowledge and statistical data.Machine Learning, 1995, 20:197~243

同被引文献34

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部