期刊文献+

用于动态序列合成的基于核密度估计的隐马尔科夫模型 被引量:1

Learning Kernel-Based HMMs for Dynamic Sequence Synthesis
下载PDF
导出
摘要 提出了一种用于动态序列合成的统计模型———基于核密度估计的隐马尔可夫模型 .给定一个输入动态序列 ,该模型可以自动产生被控的输出动态序列 .文中提出的模型是一种以非参数化概率密度估计作为观测模型的隐马尔可夫模型 .该模型对输入和受控输出序列的联合概率分布进行建模 ,并利用基于核函数的概率密度估计来学习联合概率分布的细节信息 .文中详细地讨论了该模型的学习和合成算法 .并利用该模型实现了一个虚拟指挥系统 .即给定一段音乐 ,系统可以自动生成相关的乐队指挥动作 .该文利用该系统对不同风格和节拍的音乐做了实验 .实验结果验证了算法的有效性 . We propose a statistic model - Kernel based Hidden Markov Model (K-HMM) for dynamic sequence synthesis. From an input sequence, the K-HMM can generate a controlled sequence automatically. A K-HMM is a HMM for which the non-parametric density estimation is used to model the state observation density of the joint input and output distribution. The subtle details of the joint distribution are well kept in our model. We describe the details of learning and synthesizing algorithm of K-HMM. By using a K-HMM, we propose a system that synthesizes a virtual conductor. From a given music sequence, virtual conductor generates a conducting gesture sequence automatically. We demonstrate our virtual conductor by synthesizing extensive animation sequences from input music sequences with different styles and beat patterns.
出处 《计算机学报》 EI CSCD 北大核心 2003年第2期153-159,共7页 Chinese Journal of Computers
基金 国家自然科学基金 ( 6 0 175 0 0 6 6 0 0 2 430 1)资助 .
关键词 动态序列合成 隐马尔科夫模型 计算机动画 时间序列分析 非参数化统计 Learning systems Probability density function Sampling Time series analysis
  • 相关文献

参考文献14

  • 1Soatto S, Doretto G,Wu Ying-Nian. Dynamic texture. In: Proceedings of the IEEE International Conference Computer Vision(ICCV'01),Vancouver, BC, Canada, 2001. 439~446
  • 2Hogins J K. Computer animation. In: Encyclopedia of Computer Science. London: International Thomson Computer Press, 2000. 196~202
  • 3Curinga S, Lavagetto F, Vignoli F. Lip movement synthesis using time delay neural networks. In: Proceedings of EUSIPCO96, Trieste,1996.1047~1051
  • 4Bregler C, Covell M, Slaney M. Video rewrite: Driving visual speech with audio. In:Proceedings of Siggraph'97,Los Angels, 1997. 357~360
  • 5Brand M. Voice puppetry. In: Proceedings of the Siggraph'99, Los Angels,1999. 21~28
  • 6Li Y, Shum H Y. Learning dynamic audio/visual mapping with Input-Output Hidden Markov Models. In: Proceedings of ACCV2002, Australia, 2002. 170~175
  • 7Rabiner L. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceeding of IEEE, 1999,77(2): 257~286
  • 8Wilson A, Bobick A. Parametric Hidden Markov Models for gesture recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1999, 21(9): 457~572
  • 9Simonoff J S. Smoothing methods in statistics. New-York: Springer-Verlag, 1996
  • 10MacCormick J, Blake A. Probabilistic exclusion and partitioned sampling for multiple object tracking. International Journal of Computer Vision, 2000, 39(1):57~71

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部