期刊文献+

基于超曲面的海量数据直接分类方法 被引量:4

The Large Data Direct Classifying Method Based on Hyper Surface
下载PDF
导出
摘要 使用支持向量机对海量数据的分类是相当困难的 .为了解决这个问题 ,该文讨论了以下问题 :( 1)提出了一种通用的基于超曲面的直接分类方法 ,它是基于Jordan曲线定理 ,根据围绕数的奇偶进行分类判断的一种新算法 ;( 2 )提出了分类超曲面的概念 ,设计出超曲面的构造方法及基于Jordan定理的分类算法 ;( 3)对双螺旋等问题的分类实验结果说明 :分类超曲面可以有效地解决在有限区域分布很复杂的海量的非线性数据分类问题 ,并能够提高分类效率和准确率 . It is quite difficult to classify large data by using the support vector machine. To solve the problem, several questions are discussed in this paper as below: (1) A new universal classifying method based hyper surface, HSC, is put forward based on Jordan Curve Theorem, which classify data according to whether the rewind number is odd or even. (2) The concept of separating hyper surface has been defined. Moreover, the training and classifying algorithms using HSC method are designed. (3) The experimental results of two-spiral discrimination and so on show that the separating hyper surface method can effectively solve the problem of classification of a vast amount of data and it is clear that the classifying efficiency and accuracy have been improved by using this method.
出处 《计算机学报》 EI CSCD 北大核心 2003年第2期206-211,共6页 Chinese Journal of Computers
基金 国家自然科学基金 ( 6 0 1730 17 90 10 40 2 1) 北京市自然科学基金( 40 110 0 3)资助
关键词 超曲面 海量数据直接分类方法 Jordan曲线定理 支持向量机 现代智能技术 机器学习 人工神经网络 separating hyper surface classifying method based hyper surface Jordan Curve Theorem
  • 相关文献

参考文献9

  • 1Vapnik V N.The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 2张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Vapnik V N. Statistical Learning Theory. New York: John Wiley & Sons Inc,1998
  • 4张文生,丁辉,王珏.基于邻域原理计算海量数据支持向量的研究[J].软件学报,2001,12(5):711-720. 被引量:24
  • 5Zhang Ling, Zhang Bo. A geometrical representation of McCulloch-Pitts neural model and its applications. IEEE Transactions on Neural Networks, 1999, 10(4): 925~929
  • 6Widrow B, Hoff M. IRE Wescon Convension Record. Part 4, Institute of Radio Engineering, New York, 1960. 96~104
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268
  • 8Bian Zhao-Qi, et al.Pattern Recognition.Beijing: Tsinghua University Press,2000(in Chinese)(边肇棋等. 模式识别(第二版). 北京: 清华大学出版社, 2000)
  • 9Widrow B, Winter R G. Layered neural nets for pattern recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(3): 1109~1118

二级参考文献4

  • 1Zhang Ling,IEEE Transactions Neural Networks,1999年,10卷,4期,925页
  • 2Zhang Ling,Proc 3rd Pacific Asia Conference PAKDD 99 Methodologies for Knowledge Discovery…,1999年,238页
  • 3Zhang Bo,IEEE Trans Neural Networks,1995年,6卷,3期,771页
  • 4卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2306

同被引文献29

  • 1王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 2杨敏,张焕国,傅建明,罗敏.基于支持向量数据描述的异常检测方法[J].计算机工程,2005,31(3):39-42. 被引量:17
  • 3吴涛,张铃,张燕平.机器学习中的核覆盖算法[J].计算机学报,2005,28(8):1295-1301. 被引量:33
  • 4张涌,朱洪.一类弱集合覆盖问题的近似算法[J].计算机学报,2005,28(9):1497-1500. 被引量:4
  • 5He Qing, Shi Zhong-Zhi, Ren Li-An, Lee E S. A novel classification method based on HyperSurface. International Journal of Mathematical and Computer Modeling, 2003, 38 (3 4): 395-407.
  • 6He Qing, Shi Zhong-Zhi, Ren Li-An. The classification method based on hyper surface//Proceedings of the IEEE International Joint Conference on Neural Networks. Hawaii, 2002 1499-1503.
  • 7He Qing, Zhao Xiu-Rong, Shi Zhong-Zhi. Minimal consistent subset for hyper surface classification method. International Journal of Pattern Recognition and Artificial Intelligence, 2008, 22(1): 95-108.
  • 8Mitchell Tom M. Machine Learning. New York: McGraw Hill, 1997.
  • 9Anthony Martin, Biggs Norman. Computational Learning Theory: An Introduction. Cambridge, England:Cambridge University Press, 1992.
  • 10Brualdi Richard A. Introductory Combinatorics. Upper Saddle River, NJ: Prentice Hail, 1999.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部