期刊文献+

二次奇摄动问题解的渐近估计 被引量:4

The Asymptotic Estimate for Quadratic Singularly Perturbed Problems
下载PDF
导出
摘要 研究了二次奇摄动问题εy″=p(t,y)y′2 +g(t,y) ,0 <t<1,y( 0 ,ε) =A(ε) ,y( 1,ε) =B(ε) 解的性态。在适当的条件下 ,利用微分不等式理论 ,讨论了该问题解的存在性和渐近性态 ,给出任意n阶的渐近估计。 The quadratic singularly perturbed problems εy″=p(t,y)y′2+g(t,y),0<t<1,y(0,ε)=A(ε),y(1,ε)=B(ε) are studied.By the theory of differential inequalities, the existence and asymptotic behavior of solution for the boundary value problems are probed. The n th-order asymptotic estimate is obtained.
作者 韩祥临
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期104-105,共2页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目 ( 10 0 710 48) 浙江省自然科学基金资助项目 ( 10 2 0 0 9)
关键词 非线性 奇摄动 渐近性态 nonlinearity singular perturbation asymptotic behavior
  • 相关文献

参考文献4

  • 1[1]GLIZER V Y, FRIDMAN E. A control of linear singularly perturbed system with small state delay[J]. J Math Anal Appl,2000, 250(1):49-85.
  • 2[2]BUTUZOV V F,NEFEDOV N N,SCHNEIDER K R. Singularly perturbed elliptic problems in the case of exchange of stabilities[J].J Differential Equations,2001,169:373-395.
  • 3[3]KELLEY W G. A singular perturbation problem of carrier and pearson[J]. J Math Anal Appl,2001,255:678-697.
  • 4[4]De JAGER E M, JIANG F. The theory of singular pertubation[M]. Amsterdam:Nort-Holland Publishing Co,1996.

同被引文献10

  • 1汤小松.拟线性方程的奇摄动Robin问题[J].井冈山学院学报(综合版),2005,26(08M):21-23. 被引量:2
  • 2[1]瓦西里耶娃АБ,布图索夫ВФ.奇异摄动方程解的渐近展开[M].北京:高等教育出版社,2008.
  • 3[2]Chang K H,Howes F A.Nolinear singular perturbation phenomena:theory and application[M].New York:Springer-Verlag,1984.
  • 4Grasman, J. and Matkowsky, B. J. A Variational Approach to Singularly Perturbed Boundary Value Problems for Ordinary and Partial Differential Equations with Turning Points[ J]. SIAM J . Appl . Math. 1977,32(3) :588 ~ 597
  • 5Ackerberg, R. C. and oMalley, R. E. Jr,Boundary Layer Problem Exhibiem Exhibiting Resonance[J]. Studies in Appl Math.1970,49(3 ) :277 - 295
  • 6江福汝.具有转向点的一类常微分方程的边值问题[J].应用数学和力学,1980,(2).
  • 7Chang K W, Howes F A. Nonlinear Singular Perturbation Phenomena: Theory and Applieation[M]. New York: Springer-Verlay,1984.
  • 8Nayfeh A H. Introduction to Perturbation Techniques[M]. John Wiley& Sons,1981.
  • 9黄蔚章.奇摄动非线性系统的角层和冲击层现象[J].数学物理学报(A辑),1998,18(S1):101-106. 被引量:1
  • 10冯茂春.用微分不等式对二次方程奇摄动问题解的估计[J].纯粹数学与应用数学,2004,20(2):134-139. 被引量:5

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部