期刊文献+

降低砷净液除钴的锌粉消耗 被引量:1

Zinc Powder Consumption Decrease in Cobalt Removal from Zinc Leaching Solution with Arsenic Oxide
下载PDF
导出
摘要 采用单因素条件试验研究砷净液除钴工艺中返渣的利用、铜离子加入量和净化pH值等因素对净化效果的影响。结果表明 ,将第二、三段净液渣返回第一段净液能大幅度降低锌粉消耗。在 70℃ ,搅拌速度 2 0 0r/min ,加入碱溶砒霜 10 0mg/L ,Cu2 +加入量 2 0mg/L ,除钴pH4 5和返渣条件下 ,除钴后液残钴浓度低于 0 75mg/L ,一段净液锌粉消耗降低 5 0 %。 The effects of the recycling residue, the concentration of Cu 2+ in solution and pH on the cobalt removal processes from the zinc neutral leaching solution are investigated with the single factor experiments. The consumption of zinc powder can be remarkably decreased by the recycle of the residue. Under the condition of residue recycling, 2g/L zinc powder dosage, temperature 70℃, stirring rate 200r/min, addition of Cu 2+ 20 mg/L and arsenic oxide 100mg/L, and pH of zinc sulfate solution 4 5, the concentration of Co 2+ can be less than 0 75mg/L in the purified solution. The consumption of zinc powder in the first stage purification is reduced by 50%.
出处 《有色金属》 CSCD 2003年第1期90-91,95,共3页 Nonferrous Metals
关键词 冶金技术 锌粉消耗 返渣 湿法炼锌 除钴 metallurgical technology zinc powder consumption recycling residue hydrometallurgy of zinc cobalt removal
  • 相关文献

参考文献5

二级参考文献6

共引文献31

同被引文献15

  • 1宋海鹰,桂卫华,阳春华,彭小奇.基于核偏最小二乘法的动态预测模型在铜转炉吹炼中的应用[J].中国有色金属学报,2007,17(7):1201-1206. 被引量:12
  • 2Bockman O, Ostvold T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes[J]. Hydrometallurgy, 2000, 54(2): 65-78.
  • 3Ahmad Z, Mat Noor R, Zhang J. Multiple neural networks modeling techniques in process control: A review[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(4): 403-419.
  • 4Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel hilbert space[J]. Journal of Machine Learning Research, 2001, 2(2): 97-123.
  • 5Radhakrishnan V R, Mohamed A R. Neural networks for the identification and control of blast furnace hot metal quality[J]. Journal of Process Control, 2000, 10(6): 509-524.
  • 6Nasi J. Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process[J]. Hydrometallurgy, 2004, 73(1): 123-132.
  • 7Fugleberg S, Jarvinen A, Yllo E. Recent development in solution purification at outokumpu zinc plant, Kokkola[C]//International Symposium-World Zinc'93. Hobart, Tasmanic, 1993: 241-247.
  • 8王雅琳,谢文平,王晓丽,等.基于主元分析与贝叶斯分类的异常值在线检测方法研究[C]//第32届中国控制会议.西安,2013:7803-7808.
  • 9Cawley G C, Talbot N L C. Preventing over-fitting during model selection via Bayesian regularization of the hyper-parameters[J]. Journal of Machine Learning Research, 2007, 8(4): 841-861.
  • 10丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:925

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部