期刊文献+

数值预测气泡形状演变对温度和浓度场的影响

The Numerical Prediction of Effects of a Gas Bubble Deformation on Temperature and Concentration Fields
下载PDF
导出
摘要 提出预测气泡在静止的液体中上升时 ,形状演变对周围液体的温度和浓度场的影响的数值方法。在这个方法中 ,在每个时间步长内 ,使用直接预测 (direct-predictor)和交替求解变量 (ADV)两方法进行内部迭代。利用所发展的方法和程序 ,模拟无粘性的气泡在静止的粘性不可压缩牛顿流体中上升时的形状演变过程以及对浓度和温度场的影响。给出不同物理条件下 ,气泡演变的途径和终态稳定的气泡形状。 This paper proposes a numerical method to predict the evolution of concentration and temperature fields around a deformed gas bubble rising in a quiescent hot and bi\|solution liquid, in which an inner iteration combining with a direct\|predictor method and an ADV skill developed by authors of this paper has been developed. With a code including these methods, this paper presents an understanding of interfacial transport characteristics of a deformed inviscid bubble rising in a quiescent hot or bi\|solution liquid. The results demonstrate that the bubble deformation has a significance influence on concentration and temperature fields around a deformed bubble.
出处 《热科学与技术》 CAS CSCD 2002年第1期60-65,共6页 Journal of Thermal Science and Technology
基金 教育部留学回国人员科研启动基金资助项目
关键词 温度 浓度场 气泡形状演变 数值预测 移动非正交网格 交替求解变量 直接预测 temperature and concentration fields bubble shape evolution numerical prediction moving non\|orthogonal BFCs
  • 相关文献

参考文献20

  • 1李维仲,侯明.在静止液体中气泡上升时形状演变的数值模拟[A].中国工程热物理学会多相流分会论文集[C].大连:[s n],2002.
  • 2LI W Z, YAN Y Y. A predictor-correction method for solving steady terminal shape of a gas bubble rising through a quiescent liquid [J]. Numerical Heat Transfer, Part B:Fundamentals, 2002,42(1) :55-72.
  • 3LI W Z, YAN Y Y. An alternating dependent variables (ADV) method for treating slip-boundary conditions of free surface flows with heat and mass transfer [J]. Numerical Heat Transfer, Part B:Fundamentals, 2002, 41(2):165-189.
  • 4DERMIRDZIC I, PERIC M. Space conservation law in finite volume calculations of fluid flow [J].Int J Numer Methods Fluids, 1988,8:1037-1050.
  • 5DERMIRDZIC I, PERIC M. Finite volume methods for prediction of fluid flow in arbitrarily shaped domains with moving boundaries [J]. Int J Numer Methods Fluids, 1990,10: 771-790.
  • 6KANG I S, LEAL L G. Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number, Ⅰ: Finite-difference scheme and its application to deformation of a bubble in a uniaxial straining flow [J]. Phys Fluids, 1982, 8(7): 1929-9141.
  • 7KANG I S, LEAL L G. Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number, Ⅱ: Deformation of a bubble in a biaxial straining flow [J]. Phys Fluids,1989, A1(4): 644-660.
  • 8RYSKIN G, LEAL L G. Numerical solution of free-boundary problems in fluid mechanics, Part 1:The finite-difference technique [J]. J Fluid Mechanics, 1984,148:1-17.
  • 9RYSKIN G, LEAL L G. Numerical solution of free-boundary problems in fluid mechanics, Part 2:Buoyancy-driven motion of a gas bubble through a quiescent liquid [J]. J Fluid Mechanics, 1984,148:19-35.
  • 10RYSKIN G, LEAL L G. Numerical solution of free-boundary problems in fluid mechanics, Part 3: Bubble deformation in an axisymmetric straining flow [J]. J Fluid Mechanics, 1984,148:37-43.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部