期刊文献+

基于峰度自然对数最大化的信号盲分拣算法和盲波束形成 被引量:3

A LOGARITHM-KURTOSIS BASED COMPLEX ALGORITHM FOR BLIND SIGNAL EXTRACTION AND BLIND BEAMFORMING
下载PDF
导出
摘要 该文基于峰度自然对数最大化准则,提出了一种自适应一元信号盲分拣算法,提出的算法可以用于一元信号盲分离和进行盲波束形成,与基于峰度值最大化准则的KMA算法相比,收敛速度快,有较强的稳健性,将非线性函数引入学习速率的调节,算法自动选取学习步长,避免了人工选取学习速率不当而导致算法发散。同时,提出了两种复数抽气算法,配合一元信号盲分拣算法可以依次分离多个信号源,仿真试验验证了算法的有效性。用提出的算法在四元线阵上盲分离两个水声信号,结果发现,一元信号盲分离实现的盲波束形成波束图与最优波束接近。 One source blind extraction can be used to blind beamforming for underwater acoustic arrays. Among existing candidate approaches such as the simple constant modulus Algorithm (CMA), Kurtosis Maximization Algorithm (KMA), etc., KMA can separate both negative and positive kurtosis signals. As KMA is used to separate underwater acoustic signals the convergence rate is low. Present paper applies logarithm of kurtosis to form the objective function, and proposes a one source blind extraction algorithm based on logarithm-kurtosis maximization. At the same time, double deflation algorithms are also proposed to separate more signals in turn. In contrast to KMA convergence rate is improved. A nonlinear function is used in learning so that the algorithm can choose the learning step automatically. Computer simulations verify the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2003年第2期187-194,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金:60072052 国家973计划资助项目:JC2000030202002A
关键词 峰度自然对数最大化 信号盲分拣 盲源分离 高阶累积量 自适应随机梯度算法 Blind signal extraction, Blind source separation, Blind beamforrning, Higher order cumulants
  • 引文网络
  • 相关文献

参考文献5

  • 1[1].R. Gooch, J. Lundell, The CMA array: an adaptive beamformer for constant modulus signals,Proc, IEEE Int. Conf. Acoust, Speech Signal Process, Tokyo, Japan, Apr. 1986, 2523-2526.
  • 2[2]Zhi Ding, Tuan Nguyen, Stationary points of a Kurtosis maximization algorithm for blind signal separation and antenna beamforming, IEEE Trans. on Signal Processing, 2000, SP-48(6), 1587-1596.
  • 3[3]A. Hyvarinen, E. Oja, One unit learning rules for independent component analysis, Advances in Neural Information Processing System 9 (NIPS 96), Boston, MIT Press, 1997, 480-486.
  • 4[4]S. Amari, A. Cichocki, Adaptive blind signal processing-Neural network approaches, Proc.IEEE, 1998, 86(10), 2026 2048.
  • 5[5]R. Thawonmas, A. Cichocki, S. Amari, A cascade neural network for blind signal extraction without spurious equilibria, IEICE Trans. Fundamentals, 1998, E81-A(9), 1-14.

同被引文献16

  • 1张建明,林亚平,吴宏斌,杨格兰.独立成分分析的研究进展[J].系统仿真学报,2006,18(4):992-997. 被引量:31
  • 2王亮,王永利.超高斯与亚高斯混合信号的盲分离研究[J].科学技术与工程,2006,6(18):2841-2844. 被引量:2
  • 3Zhi Ding , Tuan Nguyen. Stationary points of a Kurtosis maximization algotithrn for blind signal separation and antenna beamforming[J]. IEEE. Trans. on Signal Processing,2000,48(6) : 1587 - 1596.
  • 4Kiyotaka Kohno, Yujiro Inouye, Mitsuru Kawamoto, et al. Adaptive Super-Exponentional Algorithms for Blind Deconvolution of MIMO Systems [ J ]. IEEE. ISCAS, 2004.680 - 683.
  • 5Shun-Ichi, Andrzej Cichocki. Adaptive Blind Signal Processing-Neural Network Approaches [J]. Proceed-ings of the IEEE, 1998, 86(10) :2026 - 2048.
  • 6朱丽敏,赖惠成.一种含噪混合信号的盲分离方法[J].科学技术与工程,2007,7(22):5771-5775. 被引量:1
  • 7Shun-lchi, Andrzej Ciehoeki. Adaptive Blind Signal Processing- Neural Network Approaches[ C ]. Proceeding of the IEEE, 1998, 86(10) :2026-2048.
  • 8Kiyotaka Kohno, Yujiro Inouye, Mitsuru Kawamoto and Tetsuga Okamoto. Adaptive Super Exponentional Algorithms for Blind De- convolution of MIMO Systems [ J ]. IEEE. ISCAS, 2004 : 680 - 683.
  • 9Zhi Ding, Tuan Nguyen. Stationary points of a Kurtosis maximiza- tion algorithm for blind signal separation and antenna beam-form- ing [ J ]. IEEE. Trans. on Signal Processing, 2000,48 ( 6 ) : 1587- 1596.
  • 10黄斌.基于实测数据统计的声纳噪声分布研究[J].计算机仿真,2013,30(7):195-199. 被引量:2

引证文献3

二级引证文献6

;
使用帮助 返回顶部