期刊文献+

Extending the Cooper Minimal Pair Theorem

Extending the Cooper Minimal Pair Theorem
原文传递
导出
摘要 In the study of cappable and noncappable properties of the recursively enumerable (r.e.) degrees, Lempp suggested a conjecture which asserts that for all r.e. degrees a and b, if a ≮ b then there exists an r.e. degree c such that c ≮ a and c ≮ b and c is cappable. We shall prove in this paper that this conjecture holds under the condition that a is high. Working below a high r.e. degree h, we show that for any r.e. degree b with h ≮ b, there exist r.e. degrees aO and al such that a0, al ≮ b, aO,a1 ≮ h, and aO and a1 form a minimal pair. In the study of cappable and noncappable properties of the recursively enumerable (r.e.) degrees, Lempp suggested a conjecture which asserts that for all r.e. degrees a and b, if a ≮ b then there exists an r.e. degree c such that c ≮ a and c ≮ b and c is cappable. We shall prove in this paper that this conjecture holds under the condition that a is high. Working below a high r.e. degree h, we show that for any r.e. degree b with h ≮ b, there exist r.e. degrees aO and al such that a0, al ≮ b, aO,a1 ≮ h, and aO and a1 form a minimal pair.
作者 张再跃
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2001年第1期77-85,共9页 计算机科学技术学报(英文版)
基金 This reserch is supported by the National Natural Science Foundation of China (No.19971090).
关键词 recursively enumerable degree minimal pair recursively enumerable degree, minimal pair
  • 相关文献

参考文献2

  • 1Li A,Ann Math,2001年
  • 2Li A,Arch Math Logic,2001年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部