期刊文献+

地下洞室埋深对围岩双重非线性影响的有限元分析 被引量:3

Finite element analyses for influence of embedded depth of an underground opening on double-nonlinearity of surrounding rockmass
下载PDF
导出
摘要 分别使用小变形和大变形弹塑性有限元方法,对位于不同埋深的地下洞室围岩动态进行了计算,分析了围岩中的塑性区、位移场和应力场。当洞室埋深较小时,岩体双重非线性表现不明显,小变形与大变形方法所得结果相当接近;当洞室埋深较大时,岩体的双重非线性明显呈现而使得两种方法的结果相差较大,此时宜选择用大变形理论。 The finite-element method with small deformation formulation as well as the large deformation formulation, is used to perform elastoplastic analyses of an underground opening with different embedded depths, and investigate the plastic zones, displacement distributions and secondary stress fields in the surrounding rockmass. It can be seen that when the embedded depth is small the computations obtained from small deformation and large deformation methods are quite close to each other, but when the embedded depth is larger , there exists a distinct difference between the results of the two methods because the double-nonlinearity of surrounding rockmass acts obviously at this time , so for the latter case, the right selection is applying the large deformation theory.
出处 《岩土力学》 EI CAS CSCD 北大核心 2003年第1期127-129,共3页 Rock and Soil Mechanics
关键词 地下洞室 埋深 围岩 有限元分析 位移场 应力场 变形理论 underground opening surrounding rockmass embedded depth double-nonlinearity finite element analysis
  • 相关文献

参考文献2

二级参考文献3

共引文献40

同被引文献32

引证文献3

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部