期刊文献+

碳纳米管及其H_2吸附体系的Raman光谱 被引量:2

Raman Spectra of Carbon Nanotubes and Their H_2-Adsorption Systems
下载PDF
导出
摘要 利用紫外Raman光谱技术 ,对分别以CO和CH4为碳源、由化学催化法制备的两种多壁碳纳米管以及它们的H2 吸附体系进行Raman光谱表征 ,观测到可分别归属于类石墨结构的基频模G (1 5 80cm- 1 )和D (1 41 6cm- 1 ,缺陷诱导 ) ,以及它们的二阶和三阶组合频 2D(2 83 2cm- 1 ) ,D +G (2 996cm- 1 ) ,2G (3 1 6 0cm- 1 )和 2D +G (441 2cm- 1 )的Raman峰 ;H2在这些多壁碳纳米管上吸附有两种形式 :非解离吸附分子氢H2 (a)和解离吸附生成含氢表面物种CHX(x =3 ,2 ,1 ) ,所观测在 2 85 0 ,2 96 7和 3 95 0cm- 1 处的Raman谱峰可分别归属于表面CH2 基的对称C -H伸缩模 ,CH3基的不对称C -H伸缩模 ,以及吸附态分子氢H2 (a)的H With an UV-Vis Raman System, Raman spectra have been taken on two kinds of multi-walled carbon nanotubes (MWCNTs), prepared from catalytic decomposition of CO and CH 4 on a Ni-Mg-O catalyst, respectively, and their H 2-adsorption systems. The Raman peaks at 1580 and 1416 cm -1 observed on the MWCNTs could be ascribed to the fundamental frequencies of G and D (induced by defects) modes, and the peaks at 2832, 2996, 3160 and 4412 cm -1 may be assigned to the second-order (2D,D+G,2G) and triad (2D+G) combination frequencies of the D and G modes, respectively. The results also indicated that adsorption of H 2 on the MWCNTs occurred in two forms, non - dissociated and dissociated, and the observed Raman peaks at 2850, 2967 and 3950 cm -1 may be assigned to symmetric C-H stretch of CH 2, asymmetric C-H stretch of CH 3, and H-H stretch of adsorbed molecular hydrogen H 2(a), respectively.
出处 《光散射学报》 2001年第4期210-215,共6页 The Journal of Light Scattering
基金 国家自然科学基金 ( 5 0 0 72 0 2 1 ) 教育部科技重点 ( 990 6 9) 福建省自然科学基金重大 ( 2 0 0 1H0 1 7)
关键词 H2吸附体系 多壁碳纳米管 紫外-可见Raman光谱 拉曼光谱 Carbon - nanotubes H 2/MWCNTs adsorption system UV-Vis Raman spectra
  • 相关文献

参考文献7

二级参考文献3

共引文献47

同被引文献17

  • 1王宝俊,李敏,赵清艳,秦育红,谢克昌.煤的表面电位与表面官能团间的关系[J].化工学报,2004,55(8):1329-1334. 被引量:51
  • 2Zuttel A,Nutzenadel Ch,Sudan P,Mauron Ph,Emmenegger Ch,Rentsch S,Schlapbach L,Weidenkaff A,Kiyobayashi T.Hydrogen sorption by carbon nanotubes and other carbon nanostructures.Journal of Alloys and Compounds,2002,330-332: 676-682.
  • 3Simonyan V V,Johnson J K.Hydrogen storage in carbon nanotubes and graphitic nanofibers.Journal of Alloys and Compounds,2002,330-332:659-665.
  • 4Cheng Huiming,Yang Quanhong,Liu Chang.Hydrogen storage in carbon nanotubes.Carbon, 2001,39:1447-1454.
  • 5Gu Chong,Gao Guanghua,Yu Yangxin,Mao Zongqiang.Simulation study of hydrogen storage in single-walled carbon nanotubes.International Journal of Hydrogen Energy,2001,26:691-696.
  • 6Kong Jing,Franklin N R,Zhou Chongwu,Chapline M G,Peng Shu, Kyeongjae Cho,Dai Hongjie.Nanotube molecular wires as chemical sensors.Science, 2000,287(28): 622-625.
  • 7Yang F H,Yang R T.Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:insight into hydrogen storage in carbon nanotubes.Carbon, 2002,40:437-444.
  • 8Collins P G,Bradley K,Ishigami M,Zettl A.Extreme oxygen sensitivity of electronic properties of carbon nanotubes.Science,2000,287(10):1801-1804.
  • 9Odom T W,Huang Jinlin,Kim P,Lieber C M.Structure and electronic properties of carbon nanotubes.J. Phys. Chem. B.,2000,104:2794-2809.
  • 10Saito R,Dresselhaus R,Dresselhaus M S.Physical Properties of Carbon Nanotubes. London: Imperial College Press, 2003, 38.

引证文献2

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部