摘要
在严格考虑泡利不相容原理的前提下,我们导出了任意单粒子哈密顿量的多粒子、多空穴能态密度的精确的、一般的公式。在半经典的Thomas-Fermi近似下,对于轴对称的谐振子势,我们得出了一个计算形变核的能态密度的完全的解析表达式。由此,我们计算了g_(1p1h),g_(1p2h),g_(2p1h)和g_(2p2h)能态密度以及与此相应的能态密度的累计数N_(1p1h),N_(1p2h),N_(2p1h)和N_(2p2h)。并与三维球线性谐振子势的计算结果作了比较。结果表明,在中重核中,形变参数对能态密度的影响是很重要的。
On the premise of considering Pauli exclusion principle strictly, we have obtai- ned an exact general formula of multiparticle and multi-hole state densities for any single-particle Hamiltonian. Besides, under the semi-classical Thomas-Fermi appro- ximation, for deformed nuclei. we have derived a completely analytic expression of state densities based on axisymmetric harmonic oscillator potential. By means of this expression, we have calculated the state densities of g_(1p1h), g_(1p2h), g_(2p1h), g_(2p2h) and their corresponding cumulative state densities of N_(1p1h), N_(1p2h), N_(2p1h), N_(2p2h), and made comparisons with the results based on the three-dimensional linear harmonic oscillator potential. The results indicate that for medium-heavy nuclei, deformation parameter has a great effect on state densities.
出处
《高能物理与核物理》
CSCD
北大核心
1992年第5期431-438,共8页
High Energy Physics and Nuclear Physics
基金
贵州省科学技术基金