期刊文献+

处理连续变量的Bayes分类方法 被引量:3

Bayes classification approaches with continuous attributes
原文传递
导出
摘要 用离散化方法处理连续变量的Bayes分类方法存在着离散区段个数不好确定、无法利用某些先验信息以及会或多或少降低分类精度等问题。针对上述问题,论文提出将概率密度估计技术应用于连续变量Bayes分类,研究了如何直接利用参数化方法、非参数化方法以及半参数化方法构造连续变量的Bayes分类器,最后分析了3种构造分类器方法的优缺点,为构造连续变量的Bayes分类器和Bayesian网络分类器奠定了理论基础。计算实例表明所述方法是可行的和有效的。 Bayes classification approaches that handle continuous attributes by discretization suffer from the problems of the hardness of determining the number of the discrete intervals, the inability to utilize some prior information and the reduced classification accuracy. As for the above problems, this paper applyied the probabilistic density estimation techniques to Bayes classification with continuous attributes. And studied how to utilize directly the parametric, nonparametric and semiparametric methods for constructing Bayes classifiers containing continuous attributes. Finally, the advantages and disadvantages of the three constructing methods were analyzed, which established the theoretical basis for Bayes classifiers and Bayesian Network classifiers with continuous attributes. The computational example shows the feasibility and effectiveness of the approaches. 
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期75-78,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(79990580) 国家"九七三"重点基础研究项目(G1998030414)
关键词 Bayes分类方法 离散化方法 BAYES分类器 信息处理 Bayesian网分类器 连续变量 classification Bayes approaches Bayesian networks continuous attributes
  • 相关文献

参考文献7

  • 1Friedman N,Geiger D,Goldszmidt M. Bayesian network classifiers [J]. Machine Learning,1997,29: 131-163.
  • 2Cooper G,Herskovits E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning,1992,9: 309-347.
  • 3Dougherty J,Kohavi R,Sahami M. Supervised and unsupervised discretization of continuous features [EB/OL]. http: //citeseer.nj.nec.com/dougherty95 supervis ed.html,1995.
  • 4Fayyad U M,Irani K B. Multi-interval Discretization of Continuous Attributes for Classification Learning [A]. R. Bajcsy. Proceedings of 13th International Joint Conference on Artificial Intelligence [C]. San Mateo,CA: Morgan Kaufmann,1993. 1022-1027.
  • 5Friedman Nir,Goldszmidt Moises. Discretizing continuous attributes whiling learning bayesian networks [EB/OL]. http: //citeseer.nj.nec.com/friedman96 discretizing,1996.
  • 6Geiger D,Heckerman D. Learning gaussian networks [R]. Technical Report MSR-TR-94-10,Microsoft research,Redmond,WA.
  • 7Krzysztof Cios,Witold Pedrycz,Roman Swiniarski. Data Mining Methods for Knowledge Discovery [M]. Kluwer Academic Publishers,1998. 161-179.

同被引文献27

  • 1王洪春,石庆喜,张勤.基于因果图的一种推理算法[J].微电子学与计算机,2005,22(5):1-3. 被引量:15
  • 2王洪春,张勤.基于模糊因果图的故障诊断[J].微电子学与计算机,2005,22(6):109-112. 被引量:13
  • 3陈亮,刘希,张元.结合光谱角的最大似然法遥感影像分类[J].测绘工程,2007,16(3):40-42. 被引量:23
  • 4中华人民共和国国家统计局.中国统计年鉴(2002)[M].北京:中国统计出版社,2002.249.
  • 5Pawlak Z. Rough Sets[J]. International Journal of Computer and Information Sciences, 1982,11 : 341-356.
  • 6Ahn B S, Cho S, Kim C. The integrated methodology of rough Set theory and artificial neural network for business failure prediction[J]. Expert Systems with Applications,2000,18(2) :65-74.
  • 7Poel D. Rough Sets for database marketing[A]. Rough Sets in Knowledge Discovery 2 [C]. Physica-Verlag,Wurzburg, 1998: 324-335.
  • 8Skalko C. Rough Sets help time the OEX [J]. Journal of Computational Intelligence in Finance, 1996,4 (6): 20-27.
  • 9Pawlak Z. Rough Set approach to knowledge-based deci sion support [J]. European Journal of Operational Research ,1997,99(1) :48-57.
  • 10吴逸飞.模式识别-原理、方法及应用[M].北京:清华大学出版社,2002..

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部