期刊文献+

语音识别中一种新的特征参数选择方法 被引量:7

Feature selection method based on orthogonal experiments for speech recognition
原文传递
导出
摘要 应用正交实验设计方案对语音识别中特征参数的选择进行了计划、分析与实验设计,目的是在大量的特征参数中选择出具有互补作用的特征参数。该方法有4个特点:1)实验方案的构造方法简单,而且得到的实验方案具有各特征参数搭配均衡的特点;2)实验结果分析方法计算简便,计算结果的物理含意明显;3)只需很少的比较实验就可以找到识别性能较好的特征参数组合;4)已有的实验结果对后续实验方案的设计有很好的指导作用。实验结果表明正交实验设计用于特征参数选择是有效的。 A new feature selection method was developed for speech recognition using orthogonal experiment design. The purpose was to identify which features cooperate. This method has 4 advantages: 1) The experiment scheme is simple and satisfies the orthogonality condition. 2) The analysis of the experiment results is convenient and the physical meaning of the analysis result is obvious. 3) This method can find feature combinations with better recognition performance using fewer experiments. 4) The experimental results provide useful information for additional experiments. The experimental results show that orthogonal experiment design facilitates feature selection.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期79-82,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(19871045)
关键词 语音识别 特征参数选择 正交实验设计 参数搭配 语音信号处理 特征向量 speech recognition feature selection orthogonal design
  • 相关文献

参考文献5

  • 1Paliwal K.Study of line spectrum pair frequencies for vowel recognition [J]. Speech Communication,1989,8(1): 27-33.
  • 2Hermansky Hykek,Morgan Nelson. RASTA processing of speech [J]. IEEE Transactions on Speech and Audio Processing,1994,2(4): 578-589.
  • 3Emmanouilidis C,Hunter A. Multiobjective evolutionary setting for feature selection and a commonality-based crossover operator [A]. Proceedings of the IEEE Conference on Evolutionary Computation [C]. Piscataway: Institute of Electrical and Electronics Engineers Inc,2000. 309-316.
  • 4陈魁.实验设计与分析[M].北京:清华大学出版社,1996,8.94.
  • 5Viikki O,Laurila K. Cepstral domain segmental feature vector normalization for noise robust speech recognition [J]. Speech Communication,1998,25(1): 133-147.

共引文献14

同被引文献31

  • 1陈立万.基于语音识别系统中DTW算法改进技术研究[J].微计算机信息,2006,22(02Z):267-269. 被引量:28
  • 2刘长明,任一峰.语音识别中DTW特征匹配的改进算法研究[J].中北大学学报(自然科学版),2006,27(1):37-40. 被引量:17
  • 3[2]S Nakagawa.Speech recognition by hidden Markov model using segmental statistics[ J ].IEICE,D-Ⅱ 1996.J79-D-Ⅱ(12):2032 -2033.
  • 4郑方.非特定人连续数字识别方法与汉语语言数据库的[J].清华大学硕士论文,1992,(6).
  • 5[6]Manual of TI TMS320C6711 Floating-Point Digital Signal Processors.Revised November 2005.
  • 6Chanwoo Kim,Kwang-deok Seo.Robust DTW-based Recognition Algorithm for Hand-held Consumer Devices[J].IEEE Transactions On Consumer Electronics,2005,51(2):699-709.
  • 7Sujay Phadke,Rhishikesh Limaye,Siddharth Verma,et al.On Design and Implementation of an Embedded Automatic SpeechRecognition System[J].IEEE Transactions on VLSI Design,2004,21(3):127-132.
  • 8Zhang Jing-jing, Li Bing-bing. A new modulation identification scheme for OFDM in muhipath rayleigh fading channel[C]//International Symposium on Computer Science and Computational Technology. Shanghai:China,IEEE,2008:793- 796.
  • 9Subasi A, Gursoy M I. EEG signal classification using PCA, ICA, LDA and support vector machines [J].Expert Systems with Applications, 2010,37 ( 12) : 8659-8666.
  • 10Xu Y, Lin C, Zhao W. Producing computationally efficient KP CA based feature extraction for classification problems[J]. Electronics Letters, 2010,46 (6) : 452-453.

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部