期刊文献+

含脉冲的Volterra型积分微分方程的稳定性 被引量:4

Stability of Impulsive Volterra Integro-differential Equations
下载PDF
导出
摘要 利用分段光滑Lyapunov函数和微分不等式,获得了含脉冲的Volterra型积分微分方程稳定、一致稳定的充要条件和渐近稳定的充分条件.且在脉冲干扰的情况下,Lyapunov函数可以不具有单调性. By using a class of piecewise continuous Lyapunov function and the method of analysis, the stability of impulsive Volterra intergrodifferential equations was studied.
作者 杨志春
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期16-19,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 VOLTERRA型积分微分方程 脉冲积分微分方程 稳定性 LYAPUNOV函数 一致稳定 渐近稳定 impulsive intergro-differential equations stability Lyapunov function
  • 相关文献

参考文献1

共引文献11

同被引文献13

  • 1彭临平.具有扰动的脉冲微分系统的稳定性[J].山西大学学报(自然科学版),1994,17(1):5-8. 被引量:3
  • 2廖哓昕.稳定性的理论、方法和应用[M].武汉:华中理工大学出版社,1999.109-116.
  • 3Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations[ M]. Singapore: World Scientific, 1989.
  • 4Xu D, Zhu W, Long S J. Global exponential stability of impulsive integro-differential equation[J ]. Nonlinear Analysis, 2006, 64: 2805.
  • 5Xu Liguang, Xu Daoyi. Exponential stability of nonlinear impulsive neutral integro-differential equations[J]. Nonlinear Analysis, 2008, 69. 2910.
  • 6Ballinger G, Liu X Z. Existence and uniqueness results for impulsive delay differential equa-tions[J ]. Dynam Contin Discrete Impuls Syst, 1999, 55: 579.
  • 7Yang Z C, Xu D Y. Robust stability of uncertain impulsive control systems with time-varying delay[J]. Comput Math Appl, 2007, 53: 760.
  • 8Xu D, Zhao H. Invariant and attracting sets of Hopfield neural networks with delay [J]. Systems Sci, 2001, 32: 863.
  • 9Zhao H. Invariant set and attractor of nonautono mous functional differential systems[J]. Math Anal Appl, 2003, 282: 437.
  • 10Xu D, Yang Z. Attacting and invariant sets for a class of impulsive functional differential equations [J]. Math AnalAppl, 2007, 329: 1036.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部