摘要
B&B(Branch&Bound)算法是特征选择中的一种全局最优算法,其固有缺点是运行时间太长。用B&B算法构造一棵搜索树,在树中搜索最优的特征子集。对B&B算法的研究集中在化简搜索树从而降低搜索复杂度上,提出了几种改进的B&B算法。从原理上分析了B&B算法及其各种改进的优缺点,将这一系列算法纳入到同一个算法框架,并在此基础上提出了一种针对BBPP算法的改进算法,BBPP+算法。通过比较各种实验数据,发现改进后的BBPP+算法的运行效率比已有的B&B算法更好。
B&B is an optimal algorithm of feature subset selection. The high computational complexity of this algorithm is its inherent problem. B&B algorithm constructs a search tree, and then searches for the optimal feature subset in the tree. The previous research on B&B algorithm focused on simplifying the search tree in order to reduce the search complexity, and several improvements have already existed. A theoretical analysis of basic B&B algorithm and the previous improvements are given under a common framework in which all the algorithms are compared. Based on this analysis, an improved B&B algorithm--BBPP+--is proposed. Experimental comparison shows that BBPP+ is more efficient than all previous algorithms. \;
出处
《红外与激光工程》
EI
CSCD
北大核心
2003年第1期17-22,77,共7页
Infrared and Laser Engineering