期刊文献+

特征选择中B&B算法的改进及比较 被引量:2

Improvement and comparative analysis of B&B algorithm in feature selection
下载PDF
导出
摘要 B&B(Branch&Bound)算法是特征选择中的一种全局最优算法,其固有缺点是运行时间太长。用B&B算法构造一棵搜索树,在树中搜索最优的特征子集。对B&B算法的研究集中在化简搜索树从而降低搜索复杂度上,提出了几种改进的B&B算法。从原理上分析了B&B算法及其各种改进的优缺点,将这一系列算法纳入到同一个算法框架,并在此基础上提出了一种针对BBPP算法的改进算法,BBPP+算法。通过比较各种实验数据,发现改进后的BBPP+算法的运行效率比已有的B&B算法更好。 B&B is an optimal algorithm of feature subset selection. The high computational complexity of this algorithm is its inherent problem. B&B algorithm constructs a search tree, and then searches for the optimal feature subset in the tree. The previous research on B&B algorithm focused on simplifying the search tree in order to reduce the search complexity, and several improvements have already existed. A theoretical analysis of basic B&B algorithm and the previous improvements are given under a common framework in which all the algorithms are compared. Based on this analysis, an improved B&B algorithm--BBPP+--is proposed. Experimental comparison shows that BBPP+ is more efficient than all previous algorithms. \;
作者 王振晓 杨杰
出处 《红外与激光工程》 EI CSCD 北大核心 2003年第1期17-22,77,共7页 Infrared and Laser Engineering
关键词 B&B算法 Branch&Bound 特征选择 最小解决树 模式识别 数据集 搜索树 全局最优 机器学习 Branch & Bound Feature selection Minimum solution tree Global optimum Machine learning
  • 相关文献

参考文献1

  • 1Pudil P Novovicová J Somol P.Feature selection toolbox software package[J].Pattern Recognition Letters,2002,(4):487-492.

同被引文献20

  • 1KYOSO M,UCHIYAMA A.Development of an ECG identification system[C].2001 Proceedings of the 23rd Annual EMBS international Conference,Istanbul,2001:3721-3723.
  • 2SHEN T W,TOMPKINS W J,HU Y H.One-lead ECG for identity verification[C].2nd Joint Conference of the IEEE Engineering in Medicine and Biology Society and Biomedical Engineering Society,Houston,2002:62-63.
  • 3PALANIAPPAN R,KRISHNUN S M.Identifying individuals using ECG beats[C].International Conference on Signal Processing and Communications (SPCOM),2004:569-572.
  • 4KIM K S,YOON T H,LEE J W,et al.A robust human identification by normalized time-domain features of electrocardiogram[C].Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.Shanghai,2005:1114-1117.
  • 5WANG Y J,AGRAFIOTI F,HATZINAKOS D,et al.Analysis of human electrocardiogram for biometric recognition[J].EURASIP Journal on Advances in Signal Processing,2008,ID:148658,11 pages.
  • 6SINGH Y N,GUPTA P.Biometrics method for human identification using electrocardiogram[C].TISTARELLI M,Nixon MS (Eds.):ICB 2009,2009:1270-1279.
  • 7GAHI Y,LAMRANI M,ZOGLAT A,et al.Biometric identification system based on electrocardiogram data[C].2nd IEEE International Conference on New Technologies,Mobility and Security (NMTS 2008).Tangier,Morocco,2008:1-5.
  • 8PUTTE T,KEUNING J.Biometrical fingerprint recognition:don't get your fingers burned[C].Fourth Working Conf.Smart Card Research and Adv.App..Bristol:Kluwer Academic Publishers,2000:289-303.
  • 9YU B,YUAN B.A more efficient branch and bound algorithm for feature selection[J].Pattern Recognition,1993,26:883-889.
  • 10IRVINE J M,WIEDERHOLD B K,GAVSHON L W,et al.Heart rate variability:A new biometric for human identification[C].Proc Intl Conf Artif.Intell.,2001:1106-1111.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部