期刊文献+

广义Grtzsch环函数的几个性质(英文) 被引量:1

Some Properties of Generalized Grtzsch Ring Function
下载PDF
导出
摘要 设0<a,r<1,r′=1-r2,Ka(r)为第一类广义椭圆积分,定义广义Gr¨otzsch环函数为μa(r)={π/[2sin(πa)]}Ka(r′)/Ka(r),μa(r)出现于广义Ramanujan模方程,而μ1/2(r)即为拟共形理论中平面Gr¨otzsch环B2\[0,r]的共形模。本文揭示了μa(r)和广义椭圆积分的若干性质,这些结果将被用于研究广义Ramanujan模方程及其解的性态。 For a∈(0,1/2],r∈(0,1) and r ′=1-r 2, let K a(r) be the generalized elliptic integral of the first kind,and μ a(r)=πK a(r ′)/[2K a(r) sin (πa)] the so-called generalized Grtzsch ring function which appears in Ramanujan's generalized modular equations and whose special case μ(r)=μ 1/2 (r) is the modulus of Grtzsch ring B 2\[0,r]R 2. In this paper,some properties of μ a(r) and generalized elliptic integrals are obtained.These results can be used to study Ramanujan's generalized modular equations.
作者 裘松良
出处 《杭州电子工业学院学报》 2002年第6期1-8,共8页 Journal of Hangzhou Institute of Electronic Engineering
基金 ProjectpartiallysupportedbyNationalNaturalScienceFoundationofChina(GrantNo.:10171090)
关键词 广义椭圆积分 Ramanujan模方程 广义Groetzsch环函数 单调性 凹凸性 generalized elliptic integrals Ramanujan's modular equation generalied Grtzsch ring function monotoneity concavity
  • 相关文献

参考文献13

  • 1Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas[ M]. New York:Dover, 1965.
  • 2Borwein J M and Borwein P B.Pi and the AGM[M] .New York:John Wiley & Sons,1987.
  • 3Anderson G D, Qiu S-L, Vamanamurthy M K and Vuorinen M. Generalized elliptic integrals and modular equations. Pacific J Math[J] .2000,192(1) ;1 - 37.
  • 41Elliott E B. A formula including Legendre' s EK' + KE' - KK' =1/2π. Messenger of Math[ J ]. 1904,33 : 31 - 40.
  • 5Bowman F. Introduction to Elliptic Functions with Applications[ M]. New York : Dover, 1961.
  • 6Byrd P F and Friedman M D. Handbook of Elliptic Integrals for Engineers and Physicists[M]. 2nd ed, Die Grundlehren Math Wiss,67. Berhn- Gottingen- Heidelberg- New York: Springer- Verlag, 1971.
  • 7Lehto O and Virtanen K I. Quasieonformal Mappings in the Plane[M] .2nd ed, Die Grundlehren Math Wiss, 126. New York-Berlin : Springer - Verlag, 1973.
  • 8Qiu Songliang. Singular values,quasiconformal maps and the Sehottky upper bound. Science in China[J]. 1998,28(7): 1241 -1247.
  • 9Qiu Songliang. Grftzsch ring and Rarnanujan' s modular equations. Acta Math Sinica[ J ]. 2000,43 (2) : 283 - 290.
  • 10Anderson G D, Vamanamurthy M K and Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps [ M ], New York:John Wiley & Sons, 1997.

同被引文献11

  • 1裘松良,赵鹏.广义Grtzsch环函数的一些性质(英文)[J].浙江理工大学学报(自然科学版),2006,23(2):189-193. 被引量:1
  • 2[9]Qiu S-L.Gr(o)tzsch ring and Ramanujan's modular equations[J].Acta Math Sinica,2000,43(2):283-290.
  • 3[11]Qiu S-L,Matti Vuorinen.Infinite products and normalized quatients of hypergeometric functions[J].SiamJ.Math.Anal,1999,30(5):1057-1075.
  • 4[1]M Abramowitz,I A Stegun.Handbook of Mathematical Functions with Formulas[M].New York:Dover,1965:253-294.
  • 5[2]J M Borwein,P B Borwein.Pi and the AGM[M].New York:John Wiley & Sons,1987:177-190.
  • 6[3]F Bowman.Introduction to Elliptic Functions with Applications[M].New York:Dover,1961:65-122.
  • 7[4]P F Byrd,M D Friedman.Handbook of Elliptic Integrals for Engineers and Physicists[M].NewYork:Springer-Verlag,1971:191-253.
  • 8[5]O Lehto,K I Virtanen.Quasiconformal Mappings in the Plane[M].New York:Springer-Verlag,1973:1-50.
  • 9[6]G D Anderson,Qiu S-L,M K Vamanamurthy,etd.Generalized elliptic integrals and modular equations[J].Pacific J Math,2000,192(1):1-37.
  • 10[7]G D Anderson,M K Vamanamurthy,M Vuorinen.Conformal Invariants,Inequalities,and QuasiconformalMaps[M].New York:John Wiley & Sons,1997:80-102,135-231.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部