期刊文献+

数据挖掘技术在热电厂过程控制与优化中的应用研究 被引量:11

Use of Data Mining Techniques in Process Control and Optimization of Thermal Power Plant
下载PDF
导出
摘要 在电厂各种热力设备运行中,越来越多的现场数据被DAS和DCS系统存储到实时数据库中,在这些数据背后往往蕴涵着丰富的知识,而这些知识的发掘和总结用人工分析的方式是无法实现的,因此提出利用数据挖掘技术服务于电厂热力设备运行控制和优化。首先阐述了数据挖掘技术的相关知识,简述了其特征和方法;之后,结合目前电厂热力设备运行中较为重要的两个方面(动态过程监测与控制、监督层静态优化)进行了详细论述,提出了一些新的控制策略和优化方法。最后总结了方法的优越性和可行性。 The scale of plant data collected in real-time database by DAS and DCS system in power plant is becoming larger and larger. There are abundant and valuable knowledge hidden behind these data. However, the knowledge discovered from these data through artificial analysis is impractical, hence a method utilizes the data mining technology to serve as a facility for process control and optimization of a power plant is proposed. The basic concept and knowledge of data mining is explained at first, then the application of data mining in two aspects, i.e. dynamic process control and supervisory steady state optimization, which are the most important issue of automatic operation of thermal power equipment is expounded. Finally, a system, which integrated the control and optimization module with the knowledge and rule-base obtained from operation database by data mining method, is proposed.
机构地区 清华大学
出处 《电站系统工程》 北大核心 2003年第2期48-50,共3页 Power System Engineering
关键词 数据挖掘 热电厂 过程控制 优化 数据库 知识发现 多模型自适应控制 静态优化技术 data mining knowledge discovery in database multi-model adaptive control steady state optimization
  • 相关文献

参考文献9

  • 1Wang X Z. Automatic classification for mining process operational data [J]. Ind. Eng. Chem. Res., 1998, 37: 2215.
  • 2Tony Ogilvie, B W Hogg. Use of Data Mining Techniques in thePerformance Monitoring and Optimization of a Thermal Power Plant [C]. IEEE Colloquium on Knowledge Discovery and Data Mining, 1998.
  • 3Chen Jian-hong. Knowledge discovery and data mining based on power plant real-time database: A survey [C]. Proc. of International Conference on Power Engineering, 2001.
  • 4R Silva. Adaptive regulation of super-heated steam temperature: a case study in an indusuial boiler [J]. Control Eng. Practice, 2000(8):1405~1415.
  • 5Prasad G, B W Hogg. A neural net based multivariable long-range predictive control strategy applied in thermal power plant control [J]. IEEE Trans. Energy Conversion, 1998, 13:176~ 182.
  • 6Peter Eserin. Application of CVA to the Dynamical Modeling and Control of Drum Level in an Industrial Boiler [C]. Proceedings of the American Control Conference, 1999.
  • 7K S Narendra. Adaptive control using multiple models [J]. IEEE Trans. Automatic Control, 1997, 42: 171~187.
  • 8K Y Lee. Multi-objective Optimal Power Plant Operation Through Coordinate Control with Pressure Set Point Scheduling [J], IEEE Trans. on Energy Conversion, 2001, 16(2): 115~122.
  • 9Carlos R. Combustion Optimization of a Load-Following Boiler with Flue Gas Recircula tion Capacity [C]. Proc. of 2000 Int. Joint PowerGeneration Conf., 2000.

同被引文献106

引证文献11

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部