期刊文献+

非等熵流气体动力学方程组解的生命跨度

LIFE SPAN OF SOLUTIONS TO NONISENTROPIC GAS DYNAMICS SYSTEMS
下载PDF
导出
摘要 考虑一维非等熵流气体动力学方程组Cauchy问题 ,给出了其经典解产生奇性的一个充分条件 ,并证明了解的生命跨度的精确估计 . Cauchy problem for one dimensional nonisentropic gas dynamics systems was considered,and a sufficient condition which solution to Cauchy problem forms singularities was given and the sharp estimate of life span was shown also.
作者 刘法贵
出处 《常德师范学院学报(自然科学版)》 2003年第1期3-5,13,共4页 Journal of Changde Teachers University
基金 国家数学天元基金 河南省杰出青年和河南省中青年骨干教师基金资助
关键词 非等熵流气体动力学方程组 CAUCHY问题 经典解 生命跨度 流体力学 物理模型 经典破裂 Nonisentropic gas dynamics systems Cauchy problem classical solution life span
  • 相关文献

参考文献10

  • 1[1]Liu Taiping. Solutions in the large for the equations of nonisentropic gas dynamics[J]. Indian Univ. Math. J., 1977,26:147 - 179.
  • 2[2]Liu Taiping. Development of singularites in the nonlinear wave for quasilinear partial differential equations[J]. J.Diff. Eqs. ,1979,33:92- 111.
  • 3[3]Zhao Yanehun, Global smooth solutions for one dimensional gas dynamics systems, IMA Preprint 545[M]. University of Minnesuta, 1989.
  • 4[4]Hasiao Ling & D. Seere. Global existence of solutions for the systems of compressible adiabatic flow through porous media[J]. SIAM J. Math. Anal., 1996,27: 70 - 77.
  • 5[5]Liu Fangui. Global smooth resolvability for one dimensional nonisentropic gas dynamics systems[J]. Nonlinear Analysis, Theory, Methods & Applications, 1999,31: 35 - 31.
  • 6[6]Li Caizhong & Wang Jianhua. Global smooth solutions for nondiagonalizable quasilinear hyperbolic systems[J]. Acta Math. Sci., 1989,9: 297 - 306.
  • 7[7]Li Tatsien. Global Classical Solutions for Q. uasilinear Hyperbolic- Systems, Research in Applied Mathematics 32[M]. Masson/John Wiley, 1994.
  • 8[8]Li Tatsien & Kong Dexing. Blow up of periodic solutions to quasilinear hyperbolic systems[J]. Nonlinear Analysis:Theory, Methods and Applications, 1996,26:1779 - 1789.
  • 9[9]Li Tatsien, Kong Dexing and Zhou Yi. Global classical solutions to quasilinear hyperbolic systems with decay initial data[J]. Nonlinear Analysis, Theory, Methods & Applications,1997,28:1299 - 1332.
  • 10[10]Peng Yuejun. Tempe de vie de sulutions classiques pour la dynamique des gaz[J]. C. R. Acad. Sci., 1994,319(1):451-454.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部