非等熵流气体动力学方程组解的生命跨度
LIFE SPAN OF SOLUTIONS TO NONISENTROPIC GAS DYNAMICS SYSTEMS
摘要
考虑一维非等熵流气体动力学方程组Cauchy问题 ,给出了其经典解产生奇性的一个充分条件 ,并证明了解的生命跨度的精确估计 .
Cauchy problem for one dimensional nonisentropic gas dynamics systems was considered,and a sufficient condition which solution to Cauchy problem forms singularities was given and the sharp estimate of life span was shown also.
基金
国家数学天元基金
河南省杰出青年和河南省中青年骨干教师基金资助
参考文献10
-
1[1]Liu Taiping. Solutions in the large for the equations of nonisentropic gas dynamics[J]. Indian Univ. Math. J., 1977,26:147 - 179.
-
2[2]Liu Taiping. Development of singularites in the nonlinear wave for quasilinear partial differential equations[J]. J.Diff. Eqs. ,1979,33:92- 111.
-
3[3]Zhao Yanehun, Global smooth solutions for one dimensional gas dynamics systems, IMA Preprint 545[M]. University of Minnesuta, 1989.
-
4[4]Hasiao Ling & D. Seere. Global existence of solutions for the systems of compressible adiabatic flow through porous media[J]. SIAM J. Math. Anal., 1996,27: 70 - 77.
-
5[5]Liu Fangui. Global smooth resolvability for one dimensional nonisentropic gas dynamics systems[J]. Nonlinear Analysis, Theory, Methods & Applications, 1999,31: 35 - 31.
-
6[6]Li Caizhong & Wang Jianhua. Global smooth solutions for nondiagonalizable quasilinear hyperbolic systems[J]. Acta Math. Sci., 1989,9: 297 - 306.
-
7[7]Li Tatsien. Global Classical Solutions for Q. uasilinear Hyperbolic- Systems, Research in Applied Mathematics 32[M]. Masson/John Wiley, 1994.
-
8[8]Li Tatsien & Kong Dexing. Blow up of periodic solutions to quasilinear hyperbolic systems[J]. Nonlinear Analysis:Theory, Methods and Applications, 1996,26:1779 - 1789.
-
9[9]Li Tatsien, Kong Dexing and Zhou Yi. Global classical solutions to quasilinear hyperbolic systems with decay initial data[J]. Nonlinear Analysis, Theory, Methods & Applications,1997,28:1299 - 1332.
-
10[10]Peng Yuejun. Tempe de vie de sulutions classiques pour la dynamique des gaz[J]. C. R. Acad. Sci., 1994,319(1):451-454.