期刊文献+

On a connectedness principle of Shokurov-Kollr type

On a connectedness principle of Shokurov-Kollr type
原文传递
导出
摘要 Let(X, ?) be a log pair over S, such that-(KX+ ?) is nef over S. It is conjectured that the intersection of the non-klt(non Kawamata log terminal) locus of(X, ?) with any fiber Xs has at most two connected components. We prove this conjecture in dimension no greater than 4 and in arbitrary dimension assuming the termination of klt flips. Let(X, ?) be a log pair over S, such that-(KX+ ?) is nef over S. It is conjectured that the intersection of the non-klt(non Kawamata log terminal) locus of(X, ?) with any fiber Xs has at most two connected components. We prove this conjecture in dimension no greater than 4 and in arbitrary dimension assuming the termination of klt flips.
出处 《Science China Mathematics》 SCIE CSCD 2019年第3期411-416,共6页 中国科学:数学(英文版)
基金 supported by National Science Foundation of USA (Grant Nos. DMS-1300750 and DMS-1265285) by a grant from the Simons Foundation (Grant No. 256202)
关键词 MINIMAL model PROGRAM non-klt LOCUS connectedness minimal model program non-klt locus connectedness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部