期刊文献+

Global strong solutions to 3-D Navier-Stokes system with strong dissipation in one direction Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday 被引量:1

Global strong solutions to 3-D Navier-Stokes system with strong dissipation in one direction Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday
原文传递
导出
摘要 We consider three-dimensional incompressible Navier-Stokes equations(NS) with different viscous coefficients in the vertical and horizontal variables. In particular, when one of these viscous coefficients is large enough compared with the initial data, we prove the global well-posedness of this system. In fact, we obtain the existence of a global strong solution to(NS) when the initial data verifies an anisotropic smallness condition which takes into account the different roles of the horizontal and vertical viscosity. We consider three-dimensional incompressible Navier-Stokes equations(NS) with different viscous coefficients in the vertical and horizontal variables. In particular, when one of these viscous coefficients is large enough compared with the initial data, we prove the global well-posedness of this system. In fact, we obtain the existence of a global strong solution to(NS) when the initial data verifies an anisotropic smallness condition which takes into account the different roles of the horizontal and vertical viscosity.
出处 《Science China Mathematics》 SCIE CSCD 2019年第6期1175-1204,共30页 中国科学:数学(英文版)
基金 supported by the Agence Nationale de la Recherche, Project IFSMACS (Grant No. ANR-15-CE40-0010) supported by National Natural Science Foundation of China (Grant Nos. 11371347 and 11688101) Morningside Center of Mathematics of the Chinese Academy of Sciences and Innovation Grant from National Center for Mathematics and Interdisciplinary Sciences
关键词 anisotropic NAVIER-STOKES equations LITTLEWOOD-PALEY theory WELL-POSEDNESS anisotropic Navier-Stokes equations Littlewood-Paley theory well-posedness
  • 相关文献

二级参考文献12

  • 1Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, 343. Heidelberg: Springer, 2011.
  • 2Cannone M, Meyer Y, Planchon F. Solutions autosimilaires des equations de Navier-Stokes. Seminaire "Equations aux Derivees Partielles de l'Ecole Polytechnique", Expose VIII. 1993-1994.
  • 3Chemin J Y. Theoremes d'unicite pour le systeme de Navier-Stokes tridimensionnel. J Anal Math, 1999, 77:27-50.
  • 4Chemin J Y. Le systeme de Navier-Stokes incompressible soixante dix ans apres Jean Leray. In: Actes des Journees Mathematiques a la Memoire de Jean Leray, Semin. Congr., 9. Paris: Soc Math France, 2004, 99-123.
  • 5Chemin J Y. Localization in Fourier space and Navier-Stokes system. In: Phase Space Analysis of Partial Differential Equations, vol. I. Pubbl Cent Ric Mat Ennio Giorgi. Pisa: Scuola Norm Sup, 53-136.
  • 6Chemin J Y, Lerner N. Flot de champs de vecteurs non lipschitziens et -quations de Navier-Stokes. J Differential Equations, 1995, 121:314-228.
  • 7Dubois S. These de doctorat:equations de Navier-Stokes dans l'espace: espaces critiques et solutions d'energie finie. Universite de Picardie Jules Verne, 2002.
  • 8Fujita H, Kato T. On the Navier-Stokes initial value problem. Arch Ration Mech Anal, 1964, 16:269-315.
  • 9Germain P, Pavlovic N, Staffilani G. Regularity of solutions to the Navier-Stokes equations evolving from small data in BMO-1. Int Math Res Not, 2007, no. 21, Art. ID rnm087, 35 pp.
  • 10Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157:22-35.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部