摘要
本文研究关于余直径的度条件,主要结果是,若G是3-连通图,其顶点集为V(G)={v1,v2,…,vn),其度序列为: d(v1)≤d(v2)≤…≤d(vn)则对G的任意一条边e都存在特征点对va,vb,使G中过e的最长圈至少为d(va)+d(vb)-1.在相同的条件下我们有d*(G)≥ m-2,
In this paper, a degree condition for codiameter is presented. The main result is as follows: let G be a 3-connected graph with the vertices set V(G) = {vi,v2, ,vn} and the degree sequence satisfying d(v1) < d(v2)< d(vn). Then, for any edge e, exists a pair of characteristic points va and Vb such that the length of the longest cycle passing through e at least d(va) + d(vi,) - 1. Under the same conditions, we have that d(G) > m - 2.
出处
《系统科学与数学》
CSCD
北大核心
2003年第1期100-108,共9页
Journal of Systems Science and Mathematical Sciences
关键词
图
圈
路
特征点对
余直径
度条件
Graph, cycle, path, a pair of characteristic vertices, codiameter.