期刊文献+

一个关于余直径的度条件

A DEGREE CONDITION FOR CODIAMETER
原文传递
导出
摘要 本文研究关于余直径的度条件,主要结果是,若G是3-连通图,其顶点集为V(G)={v1,v2,…,vn),其度序列为: d(v1)≤d(v2)≤…≤d(vn)则对G的任意一条边e都存在特征点对va,vb,使G中过e的最长圈至少为d(va)+d(vb)-1.在相同的条件下我们有d*(G)≥ m-2, In this paper, a degree condition for codiameter is presented. The main result is as follows: let G be a 3-connected graph with the vertices set V(G) = {vi,v2, ,vn} and the degree sequence satisfying d(v1) < d(v2)< d(vn). Then, for any edge e, exists a pair of characteristic points va and Vb such that the length of the longest cycle passing through e at least d(va) + d(vi,) - 1. Under the same conditions, we have that d(G) > m - 2.
出处 《系统科学与数学》 CSCD 北大核心 2003年第1期100-108,共9页 Journal of Systems Science and Mathematical Sciences
关键词 特征点对 余直径 度条件 Graph, cycle, path, a pair of characteristic vertices, codiameter.
  • 相关文献

参考文献2

  • 1[1]Enomoto H. Long paths and large cycles in finite graphs. J. Graph Theory, 1984, 8(3): 287-301.
  • 2[2]Dean N and Fraisse P. A degree condition for the circumference of a graph. J. Graph Theory, 1989,13(3): 331-334.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部