摘要
扩展de Bruijn图EB(d,m;h1,h2,…,hk)是de Bruijn图的一种推广,它是一种再要的网络互连结构.本文主要研究扩展de Bruijn图中的有根生成树,证明了对任何顶点u和任意整数r:2≤r≤d,扩展de Bruijn图都有以u为根且深度为[log(?),d]·max{hi:1≤i≤k}的rk-叉生成树,并由此获得了扩展de Bruijn图的广播时间的上界.
Extended de Bruijn digraph EB(d, m; h1,h,2, ,hk) is an extension of de Bruijn digraph, which is an important interconnection architecture for multiple processor network systems. This paper studies the spanning trees with root of extended de Bruijn digraph. It is derived that for any extended de Bruijn digraph EB(d, m; h1,h,2, ,hk) and any integer r: 2 < r < d, there exists on rk- ary spanning tree rooted at an arbitrarily given vertex, whose depth is D [logr d] . This presents an upper bound of minimum broadcasting time of the extended de Bruijn digraph.
出处
《系统科学与数学》
CSCD
北大核心
2003年第1期109-116,共8页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10171095
10001031)资助课题
中国科学院研究生院院长基金(yzjj200105)资助项目