A Note on a Class of Bidimensional Nonseparable Refinable Distributions
关于一类二维非可分细分分布的一个注记(英文)
摘要
Let M=(111-1).In this paper,an optimal upper bound estimateof the modules of Fourier transforms of M-refinable distributions is obtained by theintroduction of cycle related to M.
设M=(111-1).本文通过引入与M相关的圈的概念,给出了M-细分分布Fourier变换模的一个最优的上界估计.
基金
Supported by the Natural Science Foundation of Beijing(1013005)
the Educational Committee Foundation of Beijing(01KJ-019)
参考文献10
-
1DAUBECHIES I. Orthonormal bases ofcompactly supported wavelets [J]. Comm. Pure Appl.Math., 1988, 41: 909-996.
-
2COHEN A, DAUBECHIES I. Non-separalle bidimensionale wavelet bases [J]. Rev.Mat.Iberoamericana, 1993, 9: 51-137.
-
3KOVACEVIC J, VETTERLI M. Nonseparable multidimensionalperfect reconstruction filterbanks and wavelet bases for Rn [J]. IEEE Trans. Inf. Theory, 1992, 38: 533-555.
-
4STRANG G, NGUYEN T. Wavelets and Filter Banks [M]. Wellesley-Cambridge Press,Wellesley, MA, 1996.
-
5KOVACEVIC J, VETTERLI M. Perfect reconstruction filter banks for HDTVrepresentation and coding [J]. Image Comm., 1990, 2: 349-364.
-
6EUGENE B, YANG W. Arbitrarily smooth orthogonal nonseparable wavelets in R2 [J].SIAM J. Math. Anal., 1999, 30: 678-697.
-
7HUANG D, LI Yun-zhang, SUN Qi-yu. Refinable function and refinement mask withpolynomial and exponential decay [J]. Chinese Journal of Contemporary Mathematics, 1999,20:393-400.
-
8LI Yun-zhang. An estimate of the regularity of a class bidimensional nonseparablerefinable functions [J]. Act. Math. Sinica, 1999, 42: 1053-1064. (in Chinese)
-
9LI Yun-zhang. A Remark on the Orthogonality of a Class Bidimensional NonseparableWavelets [J]. Manuscript, 2000.
-
10DAUBECHIES I. Ten Lectures on Wavelets [M]. SIAM, Philadelphia, 1992.