摘要
本文讨论如下抛物型Monge-Ampere方程的第一初边值问题-ut+det1/n D2u=g(χ,t),(χ,t)∈Q=Ω×(0,T),u= (χ,t),(χ,t)∈ pQ,其中Ω为Rn中有界凸集.证明了在更一般的结构条件下[3,7]的结果仍然成立.证明中重要的一点是在Rn × R中非柱型域上“冻结问题”的可解性.
Some remarks are given on the results of [3] and [7]. The problem considered here is a bounded convex domain in R? It is obtained that the results in [3] and [7] are also true under a more general structure condition. One of the main points in the proof is the solvability of the 'frozen problem' in a non-cylindrical domain in M?x R.
出处
《数学年刊(A辑)》
CSCD
北大核心
2003年第1期33-40,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.1963150)资助的项目