期刊文献+

跳跃非线性项依赖于导数的二阶微分方程周期解的存在性

THE EXISTENCE OF PERIODIC SOLUTIONS OF THE SECOND ORDER DIFFERENTIAL EQUATIONS WITH JUMPING NONLINEARITIES DEPENDING ON THE DERIVATIVES
下载PDF
导出
摘要 本文研究二阶微分方程χ"+aχ+-bχ-+f(χ)g(χ'=p(t)周期解的存在性,这里χ+=max{χ,0},χ-=max{-χ,0},a,6是正常数并且点(a,b)位于某一条Fucik谱曲线上.当g(χ)的极限lim.g(χ)=g(+∞),lim g(χ)=g(-∞)和f(χ)的极限lim,g(χ)=f(+∞),lim f(χ)=f(-∞)都存在且有限时,给出了此方程存在周期解的充分条件. In this paper, we study the existence of periodic solutions of equationwhere (a, 6) lies on some Fucik spectrum curve. We provide sufficient conditions for the existence of periodic solutions for this equation if limits limand lim lim exist and are finite.
作者 王在洪
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第1期47-58,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10001025) 北京市自然科学基金(No.1022003)资助的项目
关键词 跳跃非线性项 Fucik谱曲线 周期解 二阶微分方程 Jumping nonlinearity, Fucik spectrum, Periodic solution
  • 相关文献

参考文献15

  • 1[1]Lazer, A. C. & McKenna, P. J., Existence, uniquness, and stability of oscillations in differential equations with asymmetric nonlinearities [J], Trans. Amer. Math. Soc.,315(1989), 721-739.
  • 2[2]Frederickson, P. O. & Lazer, A. C., Necessary and sufficient damping in a second order oscillator [J], J. Differential Equations, 5(1969), 262-270.
  • 3[3]Canada, A. & Drabek, P., On semilinear problems with nonlinearities depending on derivatives [J], SIAM J. Math. Anal., 27(1996), 543-557.
  • 4[4]Habets, P. & Sanchez, L., A two-point problem with nonlinearity depending only on the derivative [J], SIAM J. Math. Anal., 28(1997), 1205-1211.
  • 5[5]Mawhin, J., Some remarks on semilinear problems at resonance where the nonlinearity depends only on the derivatives [J], Acta Math. Inform. Univ. Ostraviensis, 2(1994),61-69.
  • 6[6]Dancer, N., On the Dirichlet problem for weakly nonlinear elliptic partial differential equations [J], Proc. Roy. Soc. Edinburg Scct, A, 76(1977), 283-300.
  • 7[7]Dancer, N., Boundary-value problems for weakly nonlinear ordinary differential equations [J], Bull. Austral. Math. Soc., 15(1976), 321-328.
  • 8[8]Fucik, S., Solvability of nonlinear equations and boundary value problems [M], Reidel Dordrecht, 1980.
  • 9[9]Fabry, C. & Fonda, A., Nonlinear resonance in asymmetric oscillators [J], J. Differential Equations, 147(1998), 58-78.
  • 10[10]Fabry, C. & Mawhin, J., Oscillations of a forced asymmetric oscillator at resonance [J],Nonlinearity, 13(2000), 493-505.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部