期刊文献+

Herstein定理的推广 被引量:6

A Generalization of Herstein's Theorem
原文传递
导出
摘要 1955年Herstein将著名的Jacobson定理推广为:定理A.如果对R中任意x,y,存在可依赖于x,y的整系数多项式p(t),使[x-x2p(x),y]=0,则R是交换的.本文利用多项式的系数和定义了n元多项式,f(x1,x2…,xn)的Fk性质,并以此证明了一个环的交换性定理,当n=1时,即得到定理A. Herstein generalized Jacobson's famous theorem on the commutativity of rings in 1955 as follows. Theorem A. if for every x, y ∈ R, there is a polynomial p(t) with integer coefficients, depending possibly on x and y, such that [x - x2p(x), y] = 0, then R is commutative. In this paper, we define a property Fk of the polynomial f(x1,X2,…, xn) and prove, on the bassing is property, a theorem on the commutativity of rings. Herstein's theorem is just the one case when n = 1 in our theorem.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第2期261-268,共8页 Acta Mathematica Sinica:Chinese Series
基金 黑龙江省自然科学基金资助项目
关键词 多项式 Fk性质 系数和 交换性定理 Herstein定理 Property Fk of polynomial Sum of coefficients of a polynomial Herstein theorem
  • 相关文献

参考文献7

  • 1Jacobson N., Structure theorem for algebraic algebras of bounded degree, Ann. Math., 1945, 46(2): 695-707.
  • 2Herstein I. N., Two remarks on the commutativity of rings, Canad. J. Math., 1955, 7: 411-412.
  • 3Fu C. L., Guo Y. C., Commutative confitions for semiprime rings, Acta Mathematica Sinica, 1995, 38(2):242-247 (in Chinese).
  • 4Kezlan T. P., On identities which are equivalent with commutativity Ⅱ, Math., Japan, 1989, 34(2): 197-204.
  • 5Herstein I. A., Generalization a theorem of Jacobson Ⅱ, Amer. J. Math., 1953, 75: 105-111.
  • 6Stewart P. N., Semi-simple radical classes, Pacific. J. Math., 1970, 32(2): 249-254.
  • 7Kezlam T. P., A commutatirity theorem involving certain polynomial constrains, Math. Japan., 1991, 36(4):785-789.

同被引文献14

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部