期刊文献+

带非局部源的退化半线性抛物型方程解的爆破 被引量:3

Blow-Up for Degenerate Semiliuear Parabolic Equations with Nonlocal Source
原文传递
导出
摘要 该文研究带Dirichlet边界条件的退化半线性抛物型方程:xqut-uxx=∫0af(u)dx,这里q>0.作者证明了局部解的存在唯一性并且得到当初值充分大时解在有限时刻爆破.进而,证明解的爆破点集是整个区间[0,a],这与具有局部源的方程解的性质不同. In this paper, we investigate degenerate semilinear parabolic equations xqut -uxx= f0a f(u)dx with Dirichlet boundary condition and q > 0. It is proved that the local solution is existent and unique and the solution blows up in a finite time provided that the initial data u0(x) is sufficiently large. Furthermore, it is shown that the blowup set is the entire interval [0, a], which is quite different from the results for the solution with local source.
机构地区 南京大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第2期391-396,共6页 Acta Mathematica Sinica:Chinese Series
关键词 退化半线性抛物型方程 非局部源 爆破 爆破点集 Degenerate semilinear parabolic equation Nonlocal source Bow-up Blowup set
  • 相关文献

参考文献11

  • 1Chadam J. M., Yin H. M., An iteration procedure for a class of integrodifferential equations of parabolic type, J. Integral Equations Appl., 1989, 2(1): 31-47.
  • 2Chadam J. M., Peirce A., Yin H. M., The blow-up property of the solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl., 1992, 169(2): 313-328.
  • 3Souplet P., Uniform blow-up profile and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differntil Equations, 1999, 153(2): 374-406.
  • 4Chan C. Y., Liu H. T., Global existence of solutions for degenerate semilinear parabolic problems, Nonlinear Anal., 1998, 34(4): 617-628.
  • 5Floater M. S., Blow-up at the boundary for degenerate semilinear parabolic equations, Arch. Rat. Mech. Anal., 1991, 114(1): 57-77.
  • 6Pao C. V., Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl., 1992, 166(2): 591-600.
  • 7Chan C. Y., Yuen S. I., Impulsive effects on global existence of solutions for degenerate semilinear parabolic equations, Appl. Math. Comput., 1998, 90(2): 97-116.
  • 8Chan C. Y., Kong P. C., Quenching for degenerate semilinear parabolic equationss, Appl. Anal., 1994, 54(1):17-25.
  • 9Chan C. Y., Yang J., Complete blow-up for degenerate semilinear parabolic equaitons, J. Comput. Appl.Math., 2000, 113(2): 353-364.
  • 10McLachlan N. W., Bessels functions for engineers, 2nd ed., London: Oxford at the Clarendon Press, 1955.

同被引文献8

  • 1Floater M S, Mcleod J B. Blow-up at the boundary for degenerate semilinear parabolic Equations [J]. Arch Rational Mech Anal, 1991 (114) :57-77.
  • 2Chen Y P, Xie C H. Blow up for a porous medium equation with a localized source [J]. Applied Mathematics and Computation, 2004 (159) : 79-93.
  • 3Du L L. Blow up for a degenerate reaction diffusion system with nonlinear localizde sources [J]. Journal of Mathematical Analysis and Applications, 2006 (324) : 304-320.
  • 4Du Lili. Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources [J]. Journal of Computational and Applied Mathematics, 2007 (202) : 237-247.
  • 5Souplet P. Uniform blow up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source I-J]. Journal of Differential Equations, 1999, 153 (2) : 374-406.
  • 6Liu Zhenhai. Nonlinear Degenerate Parabolic Equations[J] 1997,Acta Mathematica Hungarica(1-2):147~157
  • 7雷学红,杨凤藻,黄永霞.奇异半线性反应扩散方程组的Blow-up问题[J].昆明理工大学学报(自然科学版),2011,36(2):75-78. 被引量:2
  • 8薛星美,宋国柱.NONLINEAR EVOLUTION INCLUSIONS WITH ONE SIDE LIPSCHITZEAN IN BANACH SPACES[J].Annals of Differential Equations,1994,10(1):75-81. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部