期刊文献+

Gorenstein代数上的Hopf代数作用

Actions of Hopf Algebras on Gorenstein Algebras
下载PDF
导出
摘要 令H是有限维Hopf代数,A是左H-模代数,本文证明了A是Gorenstein代数 的充分必要条件,AH也是Gorenstein代数的条件.它是Enochs E E.,Garcia J J.和del Rio A.关于群作用相应的理论的推广.同时给出A/AH是Frobenius扩张的条件. Let H be a Hopf algebra and A an. H-module algebra. We prove that A is a Gorenstein algebra if and only if AH is a Gorenstein algebra. This extends the result of Enochs E E., Garcia J J. and del Rio A. for group actions. We also give a condition under which A/AH is a Frobenius extension.
作者 杨存洁
出处 《数学进展》 CSCD 北大核心 2003年第1期20-26,共7页 Advances in Mathematics(China)
基金 国家自然科学基金资助项目(19871057) 北京市自然科学基金资助项目(1992004).
关键词 内射维数 GORENSTEIN代数 Frobenius扩张 拟Frobenius代数 injective dimension Gorenstein algebra Frobenius extension quasi-Frobenius algebra
  • 相关文献

参考文献11

  • 1[1]Albu T, Nastasescu C. Relative Finiteness in Modple Theory [M]. New York:Dekker, 1984.
  • 2[2]Bass H. On the ubiquity of Gorenstein rings [J]. Math. Z. 1963, 82: 8-28.
  • 3[3]Doi Y. Hopf extension of algebras and Masche-type theorems [J]. Israel J. Math.,1990,72: 99-108.
  • 4[4]Enochs E E, Garcia J J, del Rio A. When does R Gorenstein imply RG Gorenstein [J] ? J. Algebra, 1996,182: 561-576.
  • 5[5]Matsumura H. Commutative Ring Theory [M]. Cambridge: Cambridge Uaiversity Press, 1986.
  • 6[6]Montgomery S. Hopf Algebra and Their Actionson Rings [D]. CBMS Pueglonal Conference Series in Math.Number 82, AMS, Providence, 1993.
  • 7[7]Montgomery S. Hopf Galois extension [J]. AMS Conternporary Math., 1992, 124:129 140.
  • 8[8]Rotman J J. An Introduction to Homological Algebra [M]. New York. Academic Press, 1979.
  • 9[9]Stenstrom B. Rings of Quotients [M]. Berlin: Springer, 1975.
  • 10[10]Van Oystaeyen F, Xu Yo nghua, Zang Yinhuo H Inductions and coinductions for Hopf extension [J]. Science in China ( Series A), 1996, 39: 246-263.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部