摘要
本文建立了从曲面到复Grassmamn流形调和映照的广义Frenet公式.作为应用, 我们得到了调和映照为强共形的一个等价条件.我们也讨论了等距调和映照的曲率pinching性 质,从而改进了有关伪全纯曲线的相应结果.
In this paper we establish two versions of Prenet formulae for harmonic maps from surfaces into complex Grassmann manifolds. As its applications, we obtain an equivalent condition for harmonic maps to be strongly conformal. We also study the curvature pinching property and improve the corresponding results for pseudo-holomorphic curves in complex Grassmann manifolds.
出处
《数学进展》
CSCD
北大核心
2003年第1期106-112,共7页
Advances in Mathematics(China)