期刊文献+

超立方体网络容错性的概率分析

A probabilistic analysis on fault tolerance of hypercube networks
下载PDF
导出
摘要 用概率分析的方法研究在给定结点错误概率的情况下超立方体网络容错性的概率,证明了一个具有1024个结点的10维超立方体网络能够容许多达10%的错误结点而具有99%的概率确保正确结点的连通性;如果结点的错误概率不超过0.1%,则所有实际规模的超立方体网络(结点数可多达1万亿个)能够具有99.9%的概率确保正确结点的连通性.研究结果表明,所提出的方法也能够用于研究其他层次结构的网络和其他网络通信问题. A new scheme that enables us to derive lower bounds for the probability of hypercube network fault tolerance in terms of node failure probability is developed. The authors formally prove that a 10-cube network of 1 024 nodes can sustain up to 10% faulty nodes (i. e. , over 100 faulty nodes) while still keep the non-faulty nodes connected with probability 99%, and that if the failure probability of each individual node is bounded by 0.1%, then all hypercube networks of practical size (e. g. , up to a trillion nodes) are able to keep their non-faulty nodes connected with probability 99. 9%. It is noticeable that the scheme is also applicable to the study of other hierarchical network structures and of other network communication problems.
出处 《中南工业大学学报》 CSCD 北大核心 2003年第1期79-83,共5页 Journal of Central South University of Technology(Natural Science)
基金 国家杰出青年自然科学基金(B类)资助项目(69928201) 长江学者奖励计划项目(2000~2002年) 教育部高等学校骨干教师资助计划项目(2000~2002年)
关键词 互联网络 超立方体网络 路由算法 容错性 概率分析 连通性 interconnection network hypercube network routing algorithm fault tolerance probabilistic analysis
  • 相关文献

参考文献14

  • 1Akers S B, Krishnamurthy B. A group-theoretic model for symmetric intereonneetion networks[J]. IEEE Transactions on Computers, 1989, 38(4) : 555-565.
  • 2Leighton F T. Introduction to parallel algorithms and architectures: arrays, trees, hypereubes[M]. California: Morgan Kaufmann Publishers, 1992.
  • 3de Cegama A L. The Technology of Parallel Processing - Parallel Processing Architectures and VLSI Hardware[M]. Prentice: Prentice Hall, 1988.
  • 4Esfahanian A H. Generalized measures of fault tolerance with application to n-cub networks[J]. IEEE Transactions on Computers, 1989, 38(11): 1586-1591.
  • 5Latifi S. Combinatorial analysis of the fault diameter of the ncube[J]. IEEE Transactions on Computers, 1993, 42(1): 27-33.
  • 6Latifi S, Hedge M, Naraghi-Pour M. Conditional connectivity measures for large muhiprocessor systems[J]. IEEE Transactions on Computers, 1994, 43(2) : 218-222.
  • 7Gu Q P, Peng S. Optimal algorithms for node-to-node fault tolerant routing in hypereubes[J]. The Computer Journal, 1996,39(7), 626-629.
  • 8Gu Q P, Peng S. k-pairwise cluster fault tolerant routing in hypercubes [J]. IEEE Transactions on Computers, 1997,46(9): 1042-1049.
  • 9Gu Q P, Peng S. Unicast in hypercubes with large number of faulty nodes[J]. IEEE Transactions on Parallel and Distributed Systems, 1999, 10(10) : 964-975.
  • 10Tien S B, Raghavendra C S. Algorithms and bounds for shortest paths and diameter in faulty hypercubes[J]. IEEE Transactions on Parallel and Distributed Systems, 1993, 4(6) :713-718.

二级参考文献9

  • 1Gu Q P,J Parallel Distributed Computing,2000年,60卷,6期,764页
  • 2Gu Q P,IEEE Trans Parallel Distributed Systems,1999年,10卷,10期,964页
  • 3Gu Q P,IEEE Trans Computers,1997年,46卷,9期,1042页
  • 4Wu J,IEEE Trans Computers,1997年,46卷,2期,241页
  • 5Chiu G M,IEEE Trans Computers,1996年,45卷,2期,143页
  • 6Gu Q P,The Computer Journal,1996年,39卷,7期,626页
  • 7Tien S B,IEEE Trans Parallel Distributed Systems,1993年,4卷,6期,713页
  • 8Lee T C,IEEE Trans Computers,1992年,41卷,10期,1242页
  • 9Chen M S,IEEE Trans Parallel Distributed Systems,1990年,1卷,2期,152页

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部