期刊文献+

双钢板混凝土组合结构平面内破坏准则研究 被引量:4

Study on in-plane failure criterion of steel-concrete-steel composite structures
原文传递
导出
摘要 针对承受平面内薄膜内力的双钢板混凝土(SCS)组合单元,基于极限分析方法,重点讨论了开裂后混凝土的双轴受力性能,提出了简洁实用的SCS组合单元平面(主)应力空间的破坏准则。通过与Varma模型的对比可知:在压剪状态下,根据极限分析模型计算的抗剪承载力更高;在单轴受压状态下,根据SCS组合单元是否配置对穿拉结体系,极限分析模型得到的单轴抗压承载力有所不同。通过与Ozaki相关试验结果进行对比,并利用有限元计算软件ABAQUS验证了极限分析模型的适用性,结果表明:极限分析模型能合理反映SCS组合单元在极限状态时的受力行为,可以用来对SCS组合单元破坏状态进行判断;建立的有限元分析模型可以用来模拟SCS组合单元承受平面内薄膜内力的受力性能。 Based on the limit analysis method,the biaxial behavior of cracked concrete was discussed in detail for steel-concrete-steel ( SCS) composite element subjected to in-plane membrane internal force. A concise and practical failure criterion for plane ( principal) stress space of SCS composite element was proposed. Compared with Varma model,the limit analysis model had higher shear capacity under compression-shear condition,and the limit analysis model had different uniaxial compression capacity under uniaxial compression condition according to whether SCS composite element was equipped with a tie-through system or not. The applicability of the limit analysis model was verified by comparing with the relevant test results of Ozaki and using the finite element calculation software ABAQUS. The results show that the limit analysis model can reasonably reflect the stress behavior of SCS composite element in the limit state,and can be used to judge the failure state of SCS composite element;the finite element analysis model can be used to simulate the mechanical behavior of SCS composite elements under in-plane membrane internal forces.
作者 黄城均 宋晓冰 Huang Chengjun;Song Xiaobing(Department of Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《建筑结构》 CSCD 北大核心 2019年第4期123-128,106,共7页 Building Structure
关键词 双钢板混凝土结构 平面应力状态 极限分析 破坏准则 steel-concrete-steel composite structure plane stress state limit analysis failure criterion
  • 相关文献

参考文献3

二级参考文献29

  • 1GB50010-2010混凝土结构设计规范[S].北京:中国建筑工程出版社,2011.
  • 2Ngo D,Scordelis A C. Finite element analysis of reinforced concrete beams[J ]. ACI, 1967,64:152 - 163.
  • 3RashidYR. Analysisofprestressed concrete pressure vessels[J].Nucl Engng Des, 1968,7: 334 - 344.
  • 4Liu T C Y, Nilson A H, Slate F O. Biaxial stress-strain relations for concrete[J ]. Journal of Structural Division, 1972,98 (ST5):1025 - 1034.
  • 5Pietruszezak S,Morz Z. Finite element analysis of deformtion of strain-softening materials[J ]. International Journal of Numerical Method in Engineering, 1981,21:1567 - 1576.
  • 6Carreira D J, Chu K H. Stress-strain relationship for reinforced concrete in tension [ J ]. ACI Journal Proceedings, 1986,83 ( 1 ):21-28.
  • 7Chen W F, Han D J. Plasticity for structural engineers[M].New York: Springer-Verlag, 1988.
  • 8Vecchio F J,Collins M P. The modified compression-field theory for reinforced concrete elements subjected to shear [ J ]. ACI Structural Journal, 1986,83(2): 219 - 231.
  • 9Kupfer H, Hilesdorf H K,Rusch H. Behavior of concrete under biaxial stress [ J ]. ACI Structure Journals, 1969, 66(2): 656 -666.
  • 10Suidan M,Schnobrich W C. Finite element analysis of reinforced concrete[J ]. Journal of Structure Divisions, 1973, 99: 2109-2122.

共引文献40

同被引文献63

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部