摘要
为对船舶结构故障进行实时预报,本文基于小波变换理论,建立混沌振动信号的离散、分解以及重构模型,对船舶故障特征信号进行提取。以某船舶振动信号为例,在信号两端采用软窗域函数重构,而信号中间位置采用硬窗域函数进行重构,然后采用本文建立的模型进行特征信号的辨识,得出子结构特征信号。结果表明:本文建立的模型较为有效,且计算速度较快,能够为工程应用提供参考。
In order to carry out real- time prediction of the ship structural faults,this paper based on wavelet transform theory,establishes the discrete,decomposition and reconstruction model of the chaotic vibration signal,and extracts the fault feature signal. Taking a ship vibration signal as an example,the soft window is used to reconstruct the signal,and the middle position of the signal is reconstructed by hard window function. Then the model is used to identify the characteristic signals. The results show that the model established in this paper is effective and fast, which can provide reference for engineering application.
出处
《舰船科学技术》
北大核心
2016年第1X期46-48,共3页
Ship Science and Technology
关键词
混沌信号
小波变换
信号处理
故障诊断
chaotic signal
wavelet transform
signal processing
fault diagnosis