期刊文献+

优化的蚁群算法和船舶电网系统云数据聚类和实现 被引量:1

Ant colony optimization algorithm and ship power systems cloud data clustering and implement
下载PDF
导出
摘要 首先分析蚁群聚类算法,并指出其存在的问题;然后给出传统的蚁群聚类算法在船舶电网云数据聚类的实现流程,针对算法中存在的问题,提出利用惯性因子、随机初始化等方式改进和优化算法对船舶电网故障进行诊断;最后通过实验进行说明,优化后的蚁群聚类算法与K-mean算法、粒子群K-mean算法相比具有较好的收敛性。 Firstly,this paper analyzed the ant colony clustering algorithm,and points out the problems. Then give the traditional ant colony clustering algorithm implementation process in ship power cloud data clustering. According to the algorithm problems,proposed the use of inertia factor,random initialization and other ways to improve and optimize the algorithm for ship power system fault diagnosis.Finally,experimental results showed optimized ant colony clustering algorithm was better convergence than K-mean algorithm,particle swarm K-mean algorithm.
作者 廖妍
出处 《舰船科学技术》 北大核心 2016年第4X期19-21,共3页 Ship Science and Technology
关键词 蚁群算法 船舶故障诊断 云数据聚类 ant colony algorithm fault diagnosis of ships cloud data clustering
  • 相关文献

参考文献3

二级参考文献13

  • 1王艳萍.实时视频图像相关跟踪的算法的改进与实现[J].舰船科学技术,2004,26(3):57-59. 被引量:6
  • 2杨欣斌 孙京诰 黄道.基于蚁群算法的聚类学习新方法[A]..第四届全球智能控制大会论文集[C].上海交通大学出版社,..
  • 3Colorini A , Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies.1st European Conf. Artificial Life, Pans., Elsevier, France, 1991
  • 4Colorini A, Dorigo M, Maniezzo V. 1991 Positive Feedback as a Search Strategy. Technical Report 91-016, Politecnico di Milano,1991
  • 5王国富,陈良益,马彩文.舰载经纬仪连续帧图像目标快速识别算法研究[J].舰船科学技术,2007,29(5):73-75. 被引量:1
  • 6SILVA R M A,RAMALHO G L. Ant system for the set covering problem [ J ]. IEEE International Conference on Systems, Mam, and Cybernetics,2001 (5) :3129 - 3133.
  • 7MNAIEZZO V,CARBONARO A. An ants heuristic for the frequency assignment problem [ M ]. Proceedings of MIC' 99,1999:927 - 935.
  • 8WHITE T, PAUGREK B. Towards multi-swarm problem solving in networks [ C ]//Proc. Third InternationalConference on Multi - Agent Systems, 1998:333 - 340.
  • 9张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3. 被引量:150
  • 10朱明,王俊普.一种聚类学习的新方法[J].模式识别与人工智能,2000,13(3):262-265. 被引量:23

共引文献174

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部