期刊文献+

神经网络在船舶水压场信号检测中的应用 被引量:1

Application of neural network in ship hydrodynamic pressure field signal detection
下载PDF
导出
摘要 在现代战争中,各种水声探测设备被开发出来,用于对我方船只和敌对船只的监测。这些水声设备的基本原理都类似,即基于对水压场的探测,获得目标物的信号特征,并由此甄别出目标物的运动状态。如今人工智能的应用,极大提高了水压场信号的检测水平。本文重点研究舰船水压场的信号检测技术,并基于神经网络算法对舰船的水压场模型进行分析。通过对水压场信号的分析,获得舰船模型的水压场数据。利用Autodyn软件对模拟船舶的水压场状态进行仿真,给出压力强度变化曲线。 In modern war,all kinds of underwater acoustic detection devices have been developed,for our hostile ships and vessels monitored and the basic principles of these devices are similar to the sound of water,which is based on the detection of pressure field obtained it was the signal characteristics of the target,and thereby identify the moving object 's state. Today,application of artificial intelligence,has greatly increased the level of detection hydraulic pressure signal. This paper focuses on the technical ship hydraulic pressure signal detection,and the neural network algorithm based on a model ship hydraulic pressure field analysis. By hydraulic pressure signal analysis obtained pressure field data model ship. AUTODYN use software to simulate a ship of state pressure field simulation,and given the strength of the pressure curve.
作者 任莉 黄清
出处 《舰船科学技术》 北大核心 2016年第9X期46-48,共3页 Ship Science and Technology
关键词 神经网络 水压场 信号检测 neural network water pressure field single detection
  • 相关文献

参考文献5

二级参考文献26

  • 1林春生,邓大新,任德奎.风浪背景下舰船水压场信号的自适应AR模型预测滤波[J].海洋学报,2004,26(4):133-138. 被引量:16
  • 2姜润翔,姜礼平,龚沈光.基于A R模型和神经网络的舰船水压信号检测方法[J].数据采集与处理,2006,21(4):459-462. 被引量:8
  • 3Martinerie J M, Albano A M, Mees A I, et al. Mutual information, strange ttraetors, and the optimal estimation of dimension [J]. Physical Review A (S1092-0145), 1992, 45 (10): 7058-7064.
  • 4Peter Grassberger, Itamar Procaccia. Measuring the strangeness of strange attractors [J]. Physical Review Letters (S1092-0145), 1983, 50(5): 346-349.
  • 5Simon Haykin.神经网络原理[M].第2版.叶世伟,史忠植译.北京:机械工业出版社,2004:229-250.
  • 6Floris Takens. Dynamical systems and turbulence [J]. Lecture Notes in Mathematics (Springer, Berlin, Germany) (S0075-8434), 1981,898: 366-381.
  • 7Matthew B. Kennel, Reggie Brown, Henry D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction [J]. Physical Review A: (S1092- 0145), 1992, 45(6): 3403- 3411.
  • 8谢衷杰.时间序列分析[M].北京:北京大学出版社,1990..
  • 9Haykin S. Neural Networks: A Comprehensive Foundation [M]. Beijing: Tsinghua University Press, 2001.
  • 10TUCK E O. Shallow water flows past slender bodies [ J ]. Fluid Mech,1966(26) :81 -95.

共引文献13

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部