期刊文献+

移动视频目标跟踪中的智能过滤算法研究

Research on intelligent filtering algorithm in mobile video target tracking
下载PDF
导出
摘要 随着视频监控系统在现代生活中的应用越来越广泛,对移动视频目标跟踪算法的研究也越来越重要。由于视频目标追踪非常复杂和困难,如何提高移动视频目标跟踪的鲁棒性、准确性和实时性成为当前发展的主要方向。本文通过视频目标跟踪理论分析,并通过改进的目标跟踪过滤算法,解决了原来Lucas Kanade光流跟踪算法的目标易丢失、鲁棒性不高、计算量大等缺点。实验结果证明,智能过滤算法能够准确预测目标质心位置,实现可靠的跟踪。 With the video monitoring system in the application of modern life more and more widely,mobile video target tracking algorithm research is becoming more and more important. Due to the complexity and difficulty of video target tracking,how to improve the robustness,veracity and instantaneity of mobile video target tracking become the main direction of the current development. In this paper,through theoretical analysis of video target tracking,and through improved target tracking filtering algorithm has solved the some shortcomings of the original Lucas Kanade optical flow,such as target easily lost,robustness of the algorithm is not high,large amount of calculationand so on; Through the experimental results show that intelligent filtering algorithm can accurately predict target centroid position,then achieve reliable tracking.
作者 陈翔
出处 《舰船科学技术》 北大核心 2016年第24期124-126,共3页 Ship Science and Technology
关键词 移动视频目标跟踪 鲁棒性 智能过滤算法 目标质心 mobile video target tracking robustness intelligent filtering algorithm the target centroid
  • 相关文献

参考文献3

二级参考文献26

  • 1Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [C]//Proeeedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, USA: IEEE Press, 2000, 142- 149.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5) : 564 - 577.
  • 3Fashing M, Tomasi C. Mean Shift is a bound optimization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 471 - 474.
  • 4Wang J Q, Yagi Y. Integrating color and shape-texture features for adaptive real-time object tracking [J]. IEEE Transactions on Image Processing, 2008, 17(2) : 235 - 240.
  • 5Stern H, Efros B. Adaptive color space switching for face tracking in multi color lighting environment [C]// Proceedings of IEEE International Conference on Automatice Face and Gesture Recognition. Washington DC, USA:IEEE Press, 2002, 249 - 254.
  • 6Serby D, Koller M S, Gool L V. Probabilistic object tracking using multiple features [C]// Proceedings of International Conference on Pattern Recognition. Cambridge UK: IEEE Computer Society Press, 2004:184 - 187.
  • 7Jesse S, ZHU Zhigang, XU Guangyou. Digital video sequence stabilization based on 2.5D motion estimation and inertial motion filtering [J]. Real-Time Image, 2001, 7(4): 357 -365.
  • 8Johansen D L, Hall J K, Beard R W, et al. Stabilization of video from miniature air vehicles for target localization [J]. Journal of Aerospace Computing Information and Communication, 2008, 5(8) : 251 - 273.
  • 9Broggi A, Grisleri P, Graf T, et al. A software video stabilization system for automotive oriented applications [J]. Proceedings of IEEE 61st Vehicular Technology Conference, 2005, 5, 2760-2764.
  • 10Wang C T, Kim J H, Byun K Y, et al. Robust digital image stabilization using the Kalman filter [J]. IEEE Transactions on Consumer Electronics, 2009, 55(1) : 6 - 14.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部