期刊文献+

舰船网络入侵目标下检测效率与准确性的平衡问题解决 被引量:2

Ships under the network invasion target detection efficiency and accuracy of the balance problem is solved
下载PDF
导出
摘要 针对舰船网络入侵目标下入侵关键目标较多,当前方法无法兼顾效率与准确性的问题。从模糊关联规则的观点对入侵目标进行分类。降低检测数据维度,最大程度对不同检测部门分类,使其约简化,放弃推导入侵数据集属性的支持度与置信度,建立频繁项目集等步骤,而是结合舰船网络入侵目标在特征上差异较大这一条件,通过制定模糊关联规则,获得网内入侵数据的相似度,进行多次检测,降低检测过程中的开销成本。实验结果表明,该方法可以兼顾舰船网络入侵目标的检测效率与准确性分体,具备应用性。 For ships invasion of key objectives under the network invasion target is more,the current method cannot both efficiency and accuracy. From the point of view of fuzzy association rules for invading target classification. Reduce the detecting data dimensions,maximum classification of different detection department,make its about to simplify,abandon intrusion dataset derived properties of the support and confidence,establish steps,such as frequent itemsets instead of the target ship network intrusion differences on the characteristics of this condition,by setting the fuzzy association rules,access to the network intrusion data similarity, multiple detection, to reduce the overhead costs in the process of detection. The experimental results show that the method can be to achieve the goal of ship network intrusion detection efficiency and accuracy of the body,have applied.
作者 陈春燕
出处 《舰船科学技术》 北大核心 2016年第24期163-165,共3页 Ship Science and Technology
关键词 舰船网络 检测效率 平衡问题 ships network detection efficiency balance problems
  • 相关文献

参考文献5

二级参考文献44

  • 1胡文,黄皓.自动入侵响应技术研究[J].计算机工程,2005,31(18):143-145. 被引量:6
  • 2高能,冯登国,向继.一种基于数据挖掘的拒绝服务攻击检测技术[J].计算机学报,2006,29(6):944-951. 被引量:44
  • 3王良民,廖闻剑.无线传感器网络可生存理论与技术研究[M].北京:人民邮电出版社,2011.
  • 4李锦泽,叶晓俊.关联规则挖掘算法研究现状[C]//第18届计算机技术与应用学术会议(CACIS).2007:216-220.
  • 5韩家炜.数据挖掘:概念与技术[M].3版北京:机械工业出版社,2012.
  • 6Wu Kaixing, Hao Juan, Wang Chunhua. Application of fuzzy association rules in intrusion detection [C] //International Conference on Internet Computing and Information Services, 2011: 269-272.
  • 7Ahadeh MS, Harold M, Jafar H. Design and analysis of ge- netic fuzzy systems for intrusion detection in computer networks [J]. Expert System with Applications, 2011, 38: 7067-7075.
  • 8Su Mingyang, Lin Chunyuen, Shengwei Chien. Genetic-fuzzy association rules for network intrusion detection systems [C] //IEEE International Conference on Fuzzy Systems, 2011 : 2046-2052.
  • 9Nikky Rai, Susheel Jain, Anurag Jain. Mining interesting positive and negative association rule based on improved genetic algorithm [J]. International Journal of Advanced Computer Science and Applications, 2014, 5 (1): 160-165.
  • 10Mohit K Gupta, Geeta Sikka. Association rules extraction using multi-objective feature of genetic algorithm [C] //Pro- ceedings of the World Congress on Engineering and Computer Science, 2013: 23-25.

共引文献31

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部