期刊文献+

蚁群优化算法在潜艇三维空间导航规划算法中的应用

Application of ant colony optimization algorithm in 3D space navigation planning of submarine
下载PDF
导出
摘要 潜艇三维空间导航规划是指在已知或未知的条件下,利用环境建模与路径搜索方法,为潜艇规划出安全、快速、隐蔽的航行路径。为提高导航规划算法的稳定性与效率,本文对蚁群算法进行改进,给出一种基于多蚁群协同的并行优化的潜艇导航规划算法,并使用Matlab与VC++对该算法进行仿真实验。实验结果表明,本文算法能够得到较为可行的路径规划。 Submarine 3D space navigation planning was planned a safe, fast and covert navigation path, which is based on environmental modeling and path searching method under known or unknown conditions. In this paper, in order to improve the stability and efficiency of the navigation planning algorithm, the ant colony algorithm was improved, and a new submarine navigation planning algorithm based on multi ant colony optimization was presentedand using Matlab and VC++to simulate the algorithm, the experimental results shown that the algorithm can got a more feasible path planning.
作者 董会国
出处 《舰船科学技术》 北大核心 2017年第2X期43-45,共3页 Ship Science and Technology
关键词 蚁群算法 三维空间 导航规划 ant colony algorithm 3D space navigation planning
  • 相关文献

参考文献2

二级参考文献10

  • 1Barto A G, Sutton R S, Brower P S, Associative search network: A reinforcement learning associative memory[ J ]. Biological Cybem,1981,40(2): 201-211.
  • 2Coloni A, Dorigo M, Maniezzo V, Ant system: Optimization by a colony of cooperating agent[J].IEEE Trans on Systems,Man and Cybemetics-Part B:Cybemetcs.1996,26(1):29-41
  • 3Dorigo M,Gambardella L M. Ant colony system: A cooperative learning approach to the tavelling salesman Problem[J].IEEE Trans on Evolutionary Computation.1996,1(1):53-66
  • 4Dorigo M,et al.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41.
  • 5Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 6Dorigo M,et al.Guest editorial:special section on ant colony optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(4):317-319.
  • 7Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[A].Proc.of the 1996 IEEE International Conference on Evolutionary Computation[C].Nagoya,Japan:ICEC'96,1996.622-627.
  • 8吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 9马良.来自昆虫世界的寻优策略——蚂蚁算法[J].自然杂志,1999,21(3):161-163. 被引量:89
  • 10张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3. 被引量:150

共引文献230

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部