期刊文献+

云计算环境下公共服务虚拟机的优化设置在船舶系统中应用研究 被引量:1

Research on the application of the optimized setting of the public service virtual machine in the cloud computing environment
下载PDF
导出
摘要 随着虚拟技术及云技术的发展,云计算平台在船舶各类数据系统中得到了广泛应用。船舶的各类电子业务通过统一接口接入云平台,各类公共服务的业务运行利用虚拟机配置资源,使得海上云计算平台资源得到充分利用。为了充分利用资源,配置动态变化,各类资源的负载均衡是最重要的衡量指标。本文首先分析Xen虚拟机线性资源配置方案,在此基础上提出一种基于A-HRL算法的船舶云计算环境下公共服务虚拟机优化配置,最后进行实验。 With the development of virtual technology and cloud technology, cloud computing platform has been widely used in various data systems. All kinds of electronic services of the ship are connected to the cloud platform through the statistical interface, and all kinds of public services are operated by using the virtual machine to configure the resources,so that the resources of the cloud computing platform can be fully utilized. In order to make full use of resources, the configuration is dynamically changing, the load balance of all kinds of resources is the most important measure. This paper first analyzes the Xen virtual machine linear resource allocation scheme, based on this puts forward a A-HRL based algorithm for optimizing the public service virtual machine in the ship cloud computing environment.
作者 王竹英
机构地区 潍坊科技学院
出处 《舰船科学技术》 北大核心 2017年第6X期150-152,共3页 Ship Science and Technology
关键词 虚拟化技术 云计算平台 动态优化 virtualization technology cloud computing platform dynamic optimization
  • 相关文献

参考文献2

二级参考文献23

  • 1Foster I, Zhao Y, Raicu I, et al. Cloud computing and grid com- puting 360-degree compared[ A]. Proc of the Grid Computing Environments Workshop, GCE 2008 [ C ]. New York: IEEE, Press, 2008.1 - 10.
  • 2Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility [ J ]. Future Generation Computer Systems,2009,25(6) :599 - 616.
  • 3Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the ACM,2010,53(4) :50 - 58.
  • 4Mell P, Grance T. The NIST definition of cloud computing[J]. Communications of the ACM,2010,53(6) :50.
  • 5Wei G Y, Vasilakos A V, Zheng Y, et al. A game-theoretic method of fair resource allocation for cloud computing services [ J] .Journal of Supercomputing,2010,54(2) :252 - 269.
  • 6Zhao G, Liu J, Tang Y, et al. Cloud computing: A statistics aspect of users[ A]. Proc of the First International Conference of Cloud Computing, CloudCom 2009 [ C ]. Heidelberg: Springer Verlag Press, 2009. 347 - 358.
  • 7Shen X, Guo Y, Chen Q, et al. A multi-objective optimization evolutionary algorithm inciting preference information based on fuzzy logic[J]. Computational Optimization and Ap- plications, 2010,46( 1 ) : 159 - 188.
  • 8Ulker E,Arslan A.Automatic knot adjustment using an artificial immune system for B-spline curve approximation[ J]. Information Sciences,2009,179(10) : 1483 - 1494.
  • 9CJao X Z,Wang X,Ovaska S J. Fusion of clonal selection algorithm and differential evolution method in training cascade- correlation neural network [ J ]. Neurocomputing, 2009,72 ( 10 - 12) :2483 - 2490.
  • 10Singh M,Suri P K.QPS rnax-min min-min: A QoS based predictive max-min, min-min switcher algorithm for job schedul- ing in a grid[ J]. Information Technology Journal, 2008,7 (8) : 1176- 1181.

共引文献66

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部