摘要
基于传感器的目标定位系统是海洋军事研究的重点领域,传感器部署越密集,采集信息反映目标信息越准确。海上复杂环境中,随着目标移动速度增加,多方位传感器数据会混入各类杂波,某些方位采集数据甚至会丢失,从而导致船舶接收到的数据关联度降低,最终降低目标定位精度。本文重点分析了复杂环境下船舶纯方位无源定位跟踪技术,针对采集信号中的噪声及非线性干扰因素,提出了一种基于多维特征值分解数据关联算法,最后进行仿真。
Sensor based target localization system has been the focus of marine military research, and the more intensive the sensor deployment, the more accurate it is to collect information and reflect the target information.The complex environment, with the increase of the target density, multiple sensor data may be mixed with all kinds of clutter and noise, some data acquisition range even loss, resulting in data association received vessels decreased, and ultimately reduce the positioning accuracy. This paper focuses on the analysis of ship tracking technology under complex environment for bearings only passive location, noise in signal acquisition and nonlinear disturbance factors, proposes a data association algorithm based on multidimensional value decomposition characteristics, finally the simulation is carried out.
出处
《舰船科学技术》
北大核心
2017年第22期115-117,共3页
Ship Science and Technology
基金
2016年度江西省教育厅科学技术研究资助项目(GJJ161149)
2016年度江西省高校党建研究资助项目(16DJQN070)
2016年度江西省高校人文社科研究项目(SZZX16032)
2015年度校级教改资助项目(JY1535)
关键词
无源定位跟踪技术
卡尔曼滤波
特征值分解
passive location and tracking technology
calman filtering
eigenvalue decomposition