期刊文献+

交互多模粒子滤波多特征自适应融合的船舶视觉跟踪 被引量:1

Interactive multi-mode particle filter multi feature adaptive fusion for ship vision tracking
下载PDF
导出
摘要 近年来,水上交通运输的蓬勃发展对高性能的船舶视觉跟踪方法提出越来越高的要求。为实现不同环境下船舶的有效跟踪,采用颜色特征和纹理特征进行船舶特征提取。针对船舶运动的随机性,本文在布朗运动的基础上构建船舶运动模型,通过颜色特征和纹理特征构建船舶观测模型。最终,本文成功实现了一种交互多模粒子滤波多特征自适应融合的船舶视觉跟踪方法,满足水上交通管理的应用需求。 In recent years,the rapid development of water transportation has put forward more and more requirements for the high performance ship vision tracking method.In order to realize the effective tracking of ships in different environments,the features of color and texture are used to extract the ship features.In view of the randomness of the ship movement,the ship motion model is constructed by Brown movement,and the ship observation model is constructed by the color and texture features.Finally,we successfully implemented an interactive multi-mode particle filter and multi feature adaptive fusion of ship visual tracking,based on the improved particle filter algorithm.
出处 《舰船科学技术》 北大核心 2018年第2X期133-135,共3页 Ship Science and Technology
基金 广州市高校创新创业教育项目(2017201201);广州市高校第九批教育教学改革项目(2017F06)
关键词 特征 自适应 模型 粒子滤波 feature adaptive model particle filter
  • 相关文献

参考文献6

二级参考文献43

  • 1徐志京,周薇娜.AIS输出信息的采集及处理技术研究[J].航海技术,2006(2):29-31. 被引量:15
  • 2姜斌,王宏强,黎湘,郭桂蓉.海杂波背景下的目标检测新方法[J].物理学报,2006,55(8):3985-3991. 被引量:22
  • 3贺涛,周正欧.基于分形自仿射的混沌时间序列预测[J].物理学报,2007,56(2):693-700. 被引量:25
  • 4Treptow A, Zell A. Real-time Object Tracking for Soccer-robots without Color Information[J]. Robotics and Autonomous Systems, 2004, 48(1):41-48.
  • 5Bobick A, Wilson A. A State-based Technique for the Summarization and Recognition of Gesture [A]. Proc of Int Conf on Computer Vision [C]. Cambridge,Britain, 1995:382-388.
  • 6Isard M, Blake A. Condensation-conditional Density Propagation for Visual Tracking [J]. Int J of Computer Vision, 1998,29 (1) : 5-28.
  • 7Nummiaro K, Koller M E, Van G L. Object Tracking with an Adaptive Color-based Particle Filter[A]. Proc of the Symposium for Pattern Recognition of the DAGM, LNCS 2449 [C]. Switzerland: September,2002 : 353-360.
  • 8Olson T, Brill F. Moving Object Detection and Event Recognition Algorithms for Smart Cameras [A]. Proc of DARPA Image Understanding Workshop [C]. San Mateo: Morgan Kaufmann, 1997:159-175.
  • 9Friedman N, Russell S. Image Segmentation in Video Sequences: A Probabilistic Approach[A]. Proc of the 13th Conf on Uncertainty in Artificial Intelligence[C]. San Francisco, 1997: 175-181.
  • 10Coraluppi S, Grimmett D. Intraping Timing Issues in Multistatic Sonar Tracking [A]. Proc of the 7th Int Conf on Information Fusion [C]. Stockholm, 2001:510-517.

共引文献47

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部